Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced materials optimization increases the lifetime for fiber lasers

19.05.2008
Researchers have found new methods for optimizing glass in order to increase the lifetime of fiber lasers. The trend is to produce fiber lasers with higher output powers, which places great demands on the optical fiber. This has been shown at Mid Sweden University in Sweden.

The interest in fiber lasers has increased dramatically in the last decade. The main driving force is coming from the industry, where these lasers are used for different kinds of materials processing such as cutting, drilling, and welding.

The fiber laser offers many advantages compared with conventional lasers in terms of better beam quality, lower prices, and a more compact design. However, it turns out that the glass material in the optical fiber looses its transparency with time, a phenomenon called "photodarkening".

This effect considerably shortens the operational lifetime of the fiber laser.

"This is primarily a concern at high output levels associated with applications using a pulsed laser configuration," says Magnus Engholm, a doctoral candidate in fiber optics.

One example of such applications is marking, where part of the surface material has to be burnt off from the object to be marked.

Fortunately the glass material can be optimized to extend the lifetime of these lasers. By choosing a proper composition and optimizing the synthesis conditions, scientists can now attain higher output powers and longer lifetimes. This will also open up for new areas of industrial application.

This research has been carried out collaboratively by Mid Sweden University and Acreo FiberLab.

Please direct any questions to: Magnus Engholm, phone: +46 (0)60-14 87 37; cell phone: +46 (0)70-483 8183; e-mail: Magnus.Engholm@miun.se

Pressofficer Lars Aronsson, +46-705 165 336;Lars.Aronsson@miun.se

Lars Aronsson | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>