Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced materials optimization increases the lifetime for fiber lasers

19.05.2008
Researchers have found new methods for optimizing glass in order to increase the lifetime of fiber lasers. The trend is to produce fiber lasers with higher output powers, which places great demands on the optical fiber. This has been shown at Mid Sweden University in Sweden.

The interest in fiber lasers has increased dramatically in the last decade. The main driving force is coming from the industry, where these lasers are used for different kinds of materials processing such as cutting, drilling, and welding.

The fiber laser offers many advantages compared with conventional lasers in terms of better beam quality, lower prices, and a more compact design. However, it turns out that the glass material in the optical fiber looses its transparency with time, a phenomenon called "photodarkening".

This effect considerably shortens the operational lifetime of the fiber laser.

"This is primarily a concern at high output levels associated with applications using a pulsed laser configuration," says Magnus Engholm, a doctoral candidate in fiber optics.

One example of such applications is marking, where part of the surface material has to be burnt off from the object to be marked.

Fortunately the glass material can be optimized to extend the lifetime of these lasers. By choosing a proper composition and optimizing the synthesis conditions, scientists can now attain higher output powers and longer lifetimes. This will also open up for new areas of industrial application.

This research has been carried out collaboratively by Mid Sweden University and Acreo FiberLab.

Please direct any questions to: Magnus Engholm, phone: +46 (0)60-14 87 37; cell phone: +46 (0)70-483 8183; e-mail: Magnus.Engholm@miun.se

Pressofficer Lars Aronsson, +46-705 165 336;Lars.Aronsson@miun.se

Lars Aronsson | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>