Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced materials optimization increases the lifetime for fiber lasers

19.05.2008
Researchers have found new methods for optimizing glass in order to increase the lifetime of fiber lasers. The trend is to produce fiber lasers with higher output powers, which places great demands on the optical fiber. This has been shown at Mid Sweden University in Sweden.

The interest in fiber lasers has increased dramatically in the last decade. The main driving force is coming from the industry, where these lasers are used for different kinds of materials processing such as cutting, drilling, and welding.

The fiber laser offers many advantages compared with conventional lasers in terms of better beam quality, lower prices, and a more compact design. However, it turns out that the glass material in the optical fiber looses its transparency with time, a phenomenon called "photodarkening".

This effect considerably shortens the operational lifetime of the fiber laser.

"This is primarily a concern at high output levels associated with applications using a pulsed laser configuration," says Magnus Engholm, a doctoral candidate in fiber optics.

One example of such applications is marking, where part of the surface material has to be burnt off from the object to be marked.

Fortunately the glass material can be optimized to extend the lifetime of these lasers. By choosing a proper composition and optimizing the synthesis conditions, scientists can now attain higher output powers and longer lifetimes. This will also open up for new areas of industrial application.

This research has been carried out collaboratively by Mid Sweden University and Acreo FiberLab.

Please direct any questions to: Magnus Engholm, phone: +46 (0)60-14 87 37; cell phone: +46 (0)70-483 8183; e-mail: Magnus.Engholm@miun.se

Pressofficer Lars Aronsson, +46-705 165 336;Lars.Aronsson@miun.se

Lars Aronsson | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Silicon as a new storage material for the batteries of the future
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>