Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INL-led team achieves nuclear fuel performance milestone

12.03.2008
Researchers at the U.S. Department of Energy’s Idaho National Laboratory, in partnership with three other science and engineering powerhouses, reached a major domestic milestone relating to nuclear fuel performance on March 8.

David Petti, Sc.D., and technical director for the INL research, says the team used reverse engineering methods to help turn the fuel test failures from the early 1990s into successes in 2008. “We wanted to close this loop for the high-temperature gas reactor fuels community,” he said. “We wanted to put more science into the tests and take the process and demonstrate its success.”

This work is important in Idaho because the Idaho National Laboratory is the U.S. Department of Energy’s lead nuclear research and development laboratory.

The research is also key in supporting reactor licensing and operation for high-temperature reactors such as the Next Generation Nuclear Plant and similar reactors envisioned for subsequent commercial energy production.

“Hats off to the R&D fuels team on this major milestone,” said Greg Gibbs, Next Generation Nuclear Plant Project director. “This is a major accomplishment in demonstrating TRISO fuel safety. This brings us one step closer to licensing a commercially-capable, high-temperature gas reactor that will be essentially emission free, help curb the rising cost of energy and help to achieve energy security for our country.”

The work is a team effort of more than 40 people from INL, The Babcock & Wilcox Company, General Atomics and Oak Ridge National Laboratory.

“I salute the team effort that made the research the success it is today,” said David Hill, INL deputy laboratory director for Science and Technology. “I saw the research start while I was part of the ORNL team, and to see it succeed today is hugely satisfying and a tribute to everyone involved.”

The team has now set its sights on reaching its next major milestone – achievement of a 12-14 percent burnup expected later this calendar year.

Research details

The research to improve the performance of coated-particle nuclear fuel met an important milestone by reaching a burnup of 9 percent without any fuel failure. Raising the burnup level of fuel in a nuclear reactor reduces the amount of fuel required to produce a given amount of energy while reducing the volume of the used fuel generated, and improves the overall economics of the reactor system.

After U.S. coated-particle fuel performance difficulties in the 1990s and a shift in national priorities, research on this type of fuel was curtailed for a time. Funding for the research resumed in 2003 as part of the DOE Advanced Gas Reactor fuel development and qualification program.

The team studied the very successful technology developed by the Germans for this fuel in the 1980s and decided to make the carbon and silicon carbide layers of the U.S. particle coatings more closely resemble the German model. The changes resulted in success that has matched the historical German level.

INL’s Advanced Test Reactor was a key enabler of the successful research. The ATR was used to provide the heating of the fuel to watch the fuel’s response. The fuel kernel is coated with layers of carbon and silicon compounds. These microspheres are then placed in compacts one-half-inch wide by two inches long and then placed in graphite inside the reactor for testing. The fuel element is closely monitored while inside the test reactor to track its behavior.

Teri Ehresman | EurekAlert!
Further information:
http://www.inl.gov

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>