Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team develops energy-efficient microchip

05.02.2008
Could lead to longer-lasting, self-charging cellphones, more

Researchers at MIT and Texas Instruments have unveiled a new chip design for portable electronics that can be up to 10 times more energy-efficient than present technology. The design could lead to cell phones, implantable medical devices and sensors that last far longer when running from a battery.

The innovative design will be presented Feb. 5 at the International Solid-State Circuits Conference in San Francisco by Joyce Kwong, a graduate student in MIT's Department of Electrical Engineering and Computer Science (EECS).

Kwong carried out the project with MIT colleagues Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, and EECS graduate students Yogesh Ramadass and Naveen Verma. Their Texas Instruments (TI) collaborators are Markus Koesler, Korbinian Huber and Hans Moormann. The team demonstrated the ultra-low-power design techniques on TI's MSP430, a widely used microcontroller. The work was conducted at the MIT Microsystems Technology Laboratories, which Chandrakasan directs.

The key to the improvement in energy efficiency was to find ways of making the circuits on the chip work at a voltage level much lower than usual, Chandrakasan explains. While most current chips operate at around one volt, the new design works at just 0.3 volts.

Reducing the operating voltage, however, is not as simple as it might sound, because existing microchips have been optimized for many years to operate at the higher standard-voltage level. "Memory and logic circuits have to be redesigned to operate at very low power supply voltages," Chandrakasan says.

One key to the new design, he says, was to build a high-efficiency DC-to-DC converter-which reduces the voltage to the lower level-right on the same chip, reducing the number of separate components. The redesigned memory and logic, along with the DC-to-DC converter, are all integrated to realize a complete system-on-a-chip solution.

One of the biggest problems the team had to overcome was the variability that occurs in typical chip manufacturing. At lower voltage levels, variations and imperfections in the silicon chip become more problematic. "Designing the chip to minimize its vulnerability to such variations is a big part of our strategy," Chandrakasan says.

So far the new chip is a proof of concept. Commercial applications could become available "in five years, maybe even sooner, in a number of exciting areas," Chandrakasan says. For example, portable and implantable medical devices, portable communications devices and networking devices could be based on such chips, and thus have greatly increased operating times. There may also be a variety of military applications in the production of tiny, self-contained sensor networks that could be dispersed in a battlefield.

In some applications, such as implantable medical devices, the goal is to make the power requirements so low that they could be powered by "ambient energy," Chandrakasan says-using the body's own heat or movement to provide all the needed power. In addition, the technology could be suitable for body area networks or wirelessly enabled body sensor networks.

"Together, TI and MIT have pioneered many advances that lower power in electronic devices, and we are proud to be part of this revolutionary, world-class university research," said Dr. Dennis Buss, chief scientist at Texas Instruments. "These design techniques show great potential for TI future low-power integrated circuit products and applications including wireless terminals, battery-operated instrumentation, sensor networks and medical electronics."

The research was funded in part by a grant from the U.S. Defense Advanced Research Projects Agency.

David Chandler | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>