Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team develops energy-efficient microchip

Could lead to longer-lasting, self-charging cellphones, more

Researchers at MIT and Texas Instruments have unveiled a new chip design for portable electronics that can be up to 10 times more energy-efficient than present technology. The design could lead to cell phones, implantable medical devices and sensors that last far longer when running from a battery.

The innovative design will be presented Feb. 5 at the International Solid-State Circuits Conference in San Francisco by Joyce Kwong, a graduate student in MIT's Department of Electrical Engineering and Computer Science (EECS).

Kwong carried out the project with MIT colleagues Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, and EECS graduate students Yogesh Ramadass and Naveen Verma. Their Texas Instruments (TI) collaborators are Markus Koesler, Korbinian Huber and Hans Moormann. The team demonstrated the ultra-low-power design techniques on TI's MSP430, a widely used microcontroller. The work was conducted at the MIT Microsystems Technology Laboratories, which Chandrakasan directs.

The key to the improvement in energy efficiency was to find ways of making the circuits on the chip work at a voltage level much lower than usual, Chandrakasan explains. While most current chips operate at around one volt, the new design works at just 0.3 volts.

Reducing the operating voltage, however, is not as simple as it might sound, because existing microchips have been optimized for many years to operate at the higher standard-voltage level. "Memory and logic circuits have to be redesigned to operate at very low power supply voltages," Chandrakasan says.

One key to the new design, he says, was to build a high-efficiency DC-to-DC converter-which reduces the voltage to the lower level-right on the same chip, reducing the number of separate components. The redesigned memory and logic, along with the DC-to-DC converter, are all integrated to realize a complete system-on-a-chip solution.

One of the biggest problems the team had to overcome was the variability that occurs in typical chip manufacturing. At lower voltage levels, variations and imperfections in the silicon chip become more problematic. "Designing the chip to minimize its vulnerability to such variations is a big part of our strategy," Chandrakasan says.

So far the new chip is a proof of concept. Commercial applications could become available "in five years, maybe even sooner, in a number of exciting areas," Chandrakasan says. For example, portable and implantable medical devices, portable communications devices and networking devices could be based on such chips, and thus have greatly increased operating times. There may also be a variety of military applications in the production of tiny, self-contained sensor networks that could be dispersed in a battlefield.

In some applications, such as implantable medical devices, the goal is to make the power requirements so low that they could be powered by "ambient energy," Chandrakasan says-using the body's own heat or movement to provide all the needed power. In addition, the technology could be suitable for body area networks or wirelessly enabled body sensor networks.

"Together, TI and MIT have pioneered many advances that lower power in electronic devices, and we are proud to be part of this revolutionary, world-class university research," said Dr. Dennis Buss, chief scientist at Texas Instruments. "These design techniques show great potential for TI future low-power integrated circuit products and applications including wireless terminals, battery-operated instrumentation, sensor networks and medical electronics."

The research was funded in part by a grant from the U.S. Defense Advanced Research Projects Agency.

David Chandler | MIT News Office
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>