Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens Creates Innovative Sequencing Batch Reactor System

25.01.2008
Siemens Water Technologies’ innovative OMNIFLO interchange sequencing batch reactor (ISBR) system provides the most energy-efficient and the lowest sludge yield of any SBR on the market today.

Developed as the result of an existing installation’s performance, the newly branded ISBR system combines the company’s state-of-the-art OMNIFLO SBR system with its Cannibal solids reduction system.


Siemens Water Technologies’ innovative OMNIFLO interchange sequencing batch reactor (ISBR) system provides the most energy-efficient and the lowest sludge yield of any SBR on the market today.

The OMNIFLO ISBR system has an inherent biological nutrient removal (BNR) capability through the use of automated controls that provide optimum environments for each BNR reaction. It also produces a very high-quality effluent at varying flows and loadings. The small footprint OMNIFLO ISBR system produces a very low sludge yield of 0.05 to 0.25 pounds of biological solids per pound of BOD per day and, compared to a typical SBR system, provides increased flexibility as well as significant power savings.

Siemens’ ISBR system is ideally suited for plants that have high solids handling costs, high energy costs and tight effluent requirements. Installing just an SBR system helps plants meet state nutrient removal limits. But adding on a Cannibal system can also reduce high energy costs associated with aerating an aerobic digester, reduce the need for installing sludge handling equipment, and generally provide a more energy-efficient solution. Significant reductions in the amount of solids generated for disposal are also ultimately realized.

The ISBR system has allowed the wastewater treatment facility at a California casino to minimize solids wasting to less than 0.1 pounds of biological solids per pound of BOD treated. The facility has also used less than 10% of the power for solids treatment than was planned with the proposed aerobic digester. A single integrated control system from Siemens Water Technologies optimizes overall plant performance and serves as a single point-of-contact for the process. It also balances ISBR system operating conditions to help maintain effluent quality and minimize solids production.

OMNIFLO and Cannibal are registered trademarks of Siemens and/or its affiliates in some countries. With the business activities of Siemens VAI Metal Technologies, Linz/Austria, Siemens Water Technologies, Warrendale/Pennsylvania/USA and Industry Technologies, Erlangen/Germany, the Siemens Industry Solutions Division (IS) is one of the world's leading solution and service providers for industrial and infrastructure facilities. Using its own products, systems and process technologies, IS develops and builds plants for end customers, commissions them and provides support during their entire life cycle.

Siemens AG
Corporate Communications
and Government Affairs
Media Relations
Reference number: IS 1207.6825 e
Press Office Industry Solutions
Franz Friese
P. O. Box 3240, D-91050 Erlangen
D-80200 Munich
Tel.: +49-9131 7-46032; Fax: -25074
E-mail: franz.friese@siemens.com

Franz Friese | Siemens AG
Further information:
http://www.siemens.com/water
http://www.industry.siemens.com/data/presse/pics/12076825.jpg

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>