Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prosthesis with information at its fingertips

06.08.2010
Scientists from Jena University develop a hand prosthesis that eases phantom pain

The pain of losing a body part is twofold, as the patients not only suffer from wound pain. Often they are also affected by so called phantom pain. Unlike bodily wounds which will eventually heal, phantom pain often lasts for years and sometimes a lifetime.

“Phantom pain is very difficult to treat”, says Professor Dr Thomas Weiss from the Friedrich-Schiller-University Jena. “Mostly they prove to be highly therapy-resistant”, the Professor at the Department for Biological and Clinical Psychology says. In many cases the symptoms persist, in spite of high dosages of painkillers. This puts patients at a high risk of medication addiction, according to the pain research scientist.

But now scientists of the University of Jena give cause for hope to the affected patients. Together with the trauma surgeons of the Jena University Hospital, business partners and supported by the German Social Accident Insurance (Deutsche Gesetzliche Unfallversicherung, DGVU) Professor Weiss´s team modified conventional hand prostheses in order to reduce phantom pain after an underarm amputation.

A stimulation unit which is connected to the remaining part of the upper arm by a cuff plays a crucial part in the newly developed medical device. “There are pressure sensors between thumb and index finger as well as on the thumb of the hand prosthesis“, Professor Dr Dr Gunther Hofmann, Director of the Jena Department of Trauma, Hand and Reconstructive Surgery explains. Originally they were only meant to regulate the strength of grip of the artificial hand – depending on what the patient wanted to pick up – a raw egg or a hammer. “Our system is now able to transmit this sensory information from the hand to the upper arm“, says trauma surgeon Hofmann. “Thus the brain picks up the feedback from the prosthesis as if it was one´s own hand“, Professor Weiss adds, explaining the cause for phantom pain: The brain structures that were originally responsible for the stimulus processing of the arm are suddenly “out of work“ after the loss of the limb. This induces a functional re-organization of these brain regions. “These areas take over the processing of sensory stimuli from other body parts, especially the arm stump and the face“, says the Jena psychologist. As a result intensified and sometimes painful sensations occur – the phantom pain.

By means of the feedback between the artificial hand and the brain, provided by the Jena system, the re-organization of the brain is supposed to be prevented or to be reversed. “The first patients who have tested the system were very positive about it”, Professor Hofmann was delighted to report. It was important now to test the feedback system on as many patients as possible, he added.

“We would like to know if the transmission of sensory information from the hand is helpful to only a few people or if it is a therapeutic for all wearers of artificial limbs”, explains Professor Weiss.

Contact:
Prof. Dr. Thomas Weiss
Institute of Psychology
Friedrich Schiller University Jena
Am Steiger 3 / Haus 1
D-07743 Jena
Phone: 0049 3641 945143
Email: thomas.weiss[at]uni-jena.de
Prof. Dr. Dr. Gunther Hofmann
Department of Trauma, Hand and Reconstructive Surgery
Jena University Hospital
Erlanger Allee 101
D-07747 Jena
Phone: 0049 3641 9322800
Email: gunther.hofmann[at]med.uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>