Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prosthesis with information at its fingertips

Scientists from Jena University develop a hand prosthesis that eases phantom pain

The pain of losing a body part is twofold, as the patients not only suffer from wound pain. Often they are also affected by so called phantom pain. Unlike bodily wounds which will eventually heal, phantom pain often lasts for years and sometimes a lifetime.

“Phantom pain is very difficult to treat”, says Professor Dr Thomas Weiss from the Friedrich-Schiller-University Jena. “Mostly they prove to be highly therapy-resistant”, the Professor at the Department for Biological and Clinical Psychology says. In many cases the symptoms persist, in spite of high dosages of painkillers. This puts patients at a high risk of medication addiction, according to the pain research scientist.

But now scientists of the University of Jena give cause for hope to the affected patients. Together with the trauma surgeons of the Jena University Hospital, business partners and supported by the German Social Accident Insurance (Deutsche Gesetzliche Unfallversicherung, DGVU) Professor Weiss´s team modified conventional hand prostheses in order to reduce phantom pain after an underarm amputation.

A stimulation unit which is connected to the remaining part of the upper arm by a cuff plays a crucial part in the newly developed medical device. “There are pressure sensors between thumb and index finger as well as on the thumb of the hand prosthesis“, Professor Dr Dr Gunther Hofmann, Director of the Jena Department of Trauma, Hand and Reconstructive Surgery explains. Originally they were only meant to regulate the strength of grip of the artificial hand – depending on what the patient wanted to pick up – a raw egg or a hammer. “Our system is now able to transmit this sensory information from the hand to the upper arm“, says trauma surgeon Hofmann. “Thus the brain picks up the feedback from the prosthesis as if it was one´s own hand“, Professor Weiss adds, explaining the cause for phantom pain: The brain structures that were originally responsible for the stimulus processing of the arm are suddenly “out of work“ after the loss of the limb. This induces a functional re-organization of these brain regions. “These areas take over the processing of sensory stimuli from other body parts, especially the arm stump and the face“, says the Jena psychologist. As a result intensified and sometimes painful sensations occur – the phantom pain.

By means of the feedback between the artificial hand and the brain, provided by the Jena system, the re-organization of the brain is supposed to be prevented or to be reversed. “The first patients who have tested the system were very positive about it”, Professor Hofmann was delighted to report. It was important now to test the feedback system on as many patients as possible, he added.

“We would like to know if the transmission of sensory information from the hand is helpful to only a few people or if it is a therapeutic for all wearers of artificial limbs”, explains Professor Weiss.

Prof. Dr. Thomas Weiss
Institute of Psychology
Friedrich Schiller University Jena
Am Steiger 3 / Haus 1
D-07743 Jena
Phone: 0049 3641 945143
Email: thomas.weiss[at]
Prof. Dr. Dr. Gunther Hofmann
Department of Trauma, Hand and Reconstructive Surgery
Jena University Hospital
Erlanger Allee 101
D-07747 Jena
Phone: 0049 3641 9322800
Email: gunther.hofmann[at]

Dr. Ute Schönfelder | idw
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>