Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Power generation is blowing in the wind

By looking at the stability of the atmosphere, wind farm operators could gain greater insight into the amount of power generated at any given time.

Power generated by a wind turbine largely depends on the wind speed. In a wind farm in which the turbines experience the same wind speeds but different shapes, such as turbulence, to the wind profile, a turbine will produce different amounts of power.

This variable power can be predicted by looking at atmospheric stability, according to Lawrence Livermore National Laboratory scientist Sonia Wharton and colleague Julie Lundquist of the University of Colorado at Boulder and the National Renewable Energy Laboratory.

In a paper appearing in the Jan. 12 edition of the journal Environmental Research Letters, Wharton and Lundquist examined turbine-generated power data, segregated by atmospheric stability, to figure out the power performance at a West Coast wind farm.

"The dependence of power on stability is clear, regardless of whether time periods are segregated by three-dimensional turbulence, turbulence intensity or wind shear," Wharton said.

The team found that power generated at a set wind speed is higher under stable conditions and lower under strongly unsteady conditions at that location. The average wind power output difference is as high as 15 percent less wind power generation when the atmosphere is unstable.

While turbulence is a relatively well-known term in assessing turbine efficiency, wind shear -- which is a difference in wind speed and direction over a relatively short distance in the atmosphere -- also plays an important role when assessing how much power a turbine generates over certain time scales.

Wharton and Lundquist said that wind farm operators could better estimate how much power is generated if the wind forecasts included atmospheric stability impact measurements.

Though earlier research looked at atmospheric stability effects on power output, few studies have analyzed power output from modern turbines with hub heights of more than 60 meters.

In the new research, Wharton and Lundquist gathered a year of power data from upwind modern turbines (80 meters high) at a multi-megawatt wind farm on the West Coast. They considered turbine power information as well as meteorological data from an 80-meter tall tower and a Sonic Detection and Ranging (SODAR), which provided wind profiles up to 200 meters above the surface, to look at turbulence and wind shear. Looking at upwind turbines removed any influence that turbine wakes may have on power performance.

The team found that wind speed and power production varied by season as well as from night to day. Wind speeds were higher at night (more power) than during the day (less power) and higher during the warm season (more power) than in the cool season (less power). For example, average power production was 43 percent of maximum generation capacity on summer days and peaked at 67 percent on summer nights.

"We found that wind turbines experienced stable, near-neutral and unstable conditions during the spring and summer," Wharton said. "But daytime hours were almost always unstable or neutral while nights were strongly stable."

"This work highlights the benefit of observing complete profiles of wind speed and turbulence across the turbine rotor disk, often available only with remote sensing technology like SODAR or LIDAR (Laser Detection and Ranging,)" Lundquist said. "Wind energy resource assessment and power forecasting would profit from this increased accuracy."

More Information

"Atmospheric stability affects wind turbine power collection," Environmental Research Letters, Jan. 12, 2012

Lawrence Livermore ramps up wind energy research, LLNL news release, Dec. 14, 2011

In the wake of the wind, LLNL news release, April 26, 2011.

"Extracting more power from the wind," Science and Technology Review, April/May 2010.

"Wind and the Grid," Science and Technology Review, March 2009

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>