Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power generation is blowing in the wind

18.01.2012
By looking at the stability of the atmosphere, wind farm operators could gain greater insight into the amount of power generated at any given time.

Power generated by a wind turbine largely depends on the wind speed. In a wind farm in which the turbines experience the same wind speeds but different shapes, such as turbulence, to the wind profile, a turbine will produce different amounts of power.

This variable power can be predicted by looking at atmospheric stability, according to Lawrence Livermore National Laboratory scientist Sonia Wharton and colleague Julie Lundquist of the University of Colorado at Boulder and the National Renewable Energy Laboratory.

In a paper appearing in the Jan. 12 edition of the journal Environmental Research Letters, Wharton and Lundquist examined turbine-generated power data, segregated by atmospheric stability, to figure out the power performance at a West Coast wind farm.

"The dependence of power on stability is clear, regardless of whether time periods are segregated by three-dimensional turbulence, turbulence intensity or wind shear," Wharton said.

The team found that power generated at a set wind speed is higher under stable conditions and lower under strongly unsteady conditions at that location. The average wind power output difference is as high as 15 percent less wind power generation when the atmosphere is unstable.

While turbulence is a relatively well-known term in assessing turbine efficiency, wind shear -- which is a difference in wind speed and direction over a relatively short distance in the atmosphere -- also plays an important role when assessing how much power a turbine generates over certain time scales.

Wharton and Lundquist said that wind farm operators could better estimate how much power is generated if the wind forecasts included atmospheric stability impact measurements.

Though earlier research looked at atmospheric stability effects on power output, few studies have analyzed power output from modern turbines with hub heights of more than 60 meters.

In the new research, Wharton and Lundquist gathered a year of power data from upwind modern turbines (80 meters high) at a multi-megawatt wind farm on the West Coast. They considered turbine power information as well as meteorological data from an 80-meter tall tower and a Sonic Detection and Ranging (SODAR), which provided wind profiles up to 200 meters above the surface, to look at turbulence and wind shear. Looking at upwind turbines removed any influence that turbine wakes may have on power performance.

The team found that wind speed and power production varied by season as well as from night to day. Wind speeds were higher at night (more power) than during the day (less power) and higher during the warm season (more power) than in the cool season (less power). For example, average power production was 43 percent of maximum generation capacity on summer days and peaked at 67 percent on summer nights.

"We found that wind turbines experienced stable, near-neutral and unstable conditions during the spring and summer," Wharton said. "But daytime hours were almost always unstable or neutral while nights were strongly stable."

"This work highlights the benefit of observing complete profiles of wind speed and turbulence across the turbine rotor disk, often available only with remote sensing technology like SODAR or LIDAR (Laser Detection and Ranging,)" Lundquist said. "Wind energy resource assessment and power forecasting would profit from this increased accuracy."

More Information

"Atmospheric stability affects wind turbine power collection," Environmental Research Letters, Jan. 12, 2012

Lawrence Livermore ramps up wind energy research, LLNL news release, Dec. 14, 2011

In the wake of the wind, LLNL news release, April 26, 2011.

"Extracting more power from the wind," Science and Technology Review, April/May 2010.

"Wind and the Grid," Science and Technology Review, March 2009

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>