Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening up the last part of the spectrum

02.12.2008
New European research on the last, hidden part of the electromagnetic spectrum is producing new, safe and non-destructive tests for medicine, security and industrial quality control.

Terahertz waves occupy the part of the spectrum between light and radio, specifically between infrared and millimetre waves. With wavelengths of 0.1-1mm, THz waves can be used like light or x-rays to create detailed images of solid objects. They have the useful property of passing easily through packaging and clothes, and since they are non-ionising they are safer than x-rays.

But THz waves can probe the content of objects as well as their shapes, thanks to their ability to respond to chemical properties. This is because their frequency range of 0.3-3THz matches the natural molecular vibrations of many common substances and biological materials.

Add these two properties together and you have a scanner that can not only detect a hidden package, but also show what is inside. New European research on THz waves could enable applications that include detecting tumours beneath the skin, a new and powerful kind of microscope for biological research, and quality control in semiconductor and pharmaceutical factories, as well as smart security scanners.

No man’s land

Scientists have known the potential of THz waves for many years, and some THz instruments are already available commercially – though the new 3D scanners found in some airports mostly use the adjacent millimetre waveband. So why the need for more THz research?

One answer, according to THz expert Martyn Chamberlain, is that THz radiation is hard to generate, lying as it does in the “no-man’s land” between electronics and optics. Electronic generators cannot yet operate at frequencies above 0.3THz, Chamberlain explains, while traditional THz lasers are too bulky for most practical applications. As a result, THz radiation has been comparatively neglected.

This is set to change following the results of an EU-funded research project called TeraNova, for which Chamberlain is a spokesperson. The 18 TeraNova partners include French electronics giants Thales and Alcatel, BAE Systems of the UK, and German drug discovery company Evotec. The four-year project is in its final stage and its partners have made several important developments in generating, using and detecting THz waves.

One big step forward was in quantum cascade lasers (QCLs): semiconductor devices that take advantage of quantum effects to operate at frequencies in the THz range. The researchers were able to extend the range of operating frequencies down to 850GHz, and are on the brink of producing QCLs that operate with simple solid-state cooling instead of the liquid nitrogen previously required.

The project also developed lasers that produce intense pulses of near-infrared light lasting as little as one femtosecond (a thousandth of a trillionth of a second!). When these extremely short pulses hit a special semiconductor target they produce “broadband” THz radiation, which has great potential for a range of new research tools in chemistry, biology and basic physics.

To complement their improved THz sources, the researchers developed new amplifiers and detectors. They have combined these in modular chips that have world-leading potential to create new low-cost analytical devices for biological research where, says Chamberlain, the very low energy of THz radiation ensures that fragile biological samples are not damaged.

From semiconductors to sperm cells

Passing easily through containers, clothes and packaging, THz waves can be used to measure the strength of alcoholic drinks or check the composition of foodstuffs or industrial raw materials, as well as identifying explosives and contraband. In the life sciences, THz technology is a highly sensitive way to detect genetic mutations and probe the structure and function of living cells, including the detection of cancers. In manufacturing processes, THz waves can check the integrity of multi-layer tablet coatings and control the quality of semiconductor wafers.

The TeraNova partners used their new THz sources and detectors to create prototypes of two practical THz devices: one aimed at electronics manufacturers and the other at animal breeders.

The first device relies on the ability of THz waves to measure the concentration and mobility of charge carriers in semiconductor wafers, especially those created using a technique known as molecular beam epitaxy (MBE). Traditional measurements of these properties require wafers to be sacrificed, so the non-destructive nature of the THz scanner is a real step forward.

The other demonstration device provides a way to identify individual biological cells without the need to “label” them with toxic dyes or radioisotopes. The Micro-integrated Single-cell THz Spectroscopic Sensor (MIST) will detect the X and Y chromosomes in sperm cells, and might form the basis for an automatic sex-selection system that would be useful to livestock breeders.

At a less commercial level, the project developed a number of “proof-of-principle” demonstrators for biological research. These include sensors that can identify the motion of groups of molecules in biological materials, and the binding state of biomolecules without the use of chemical labels. The researchers also developed a THz microscope, and performed much basic research on signal processing and the properties of materials at THz frequencies.

These more fundamental activities pave the way to new practical applications for the last part of the spectrum.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90252

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>