Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high energy density automotive battery system from Fraunhofer IISB and international partners

25.08.2015

Fraunhofer IISB participated in the european AVTR project that has addressed the powertrain systems for light EVs. The IISB was responsible for a novel fully redundant battery system of an electric vehicle. An advanced battery management system was integrated, comprising control algorithms. The international AVTR project focused on a special EV that may fulfill the Japanese Kei Car specification. With the vehicle developed within the AVTR-project, highest modularity, low costs and reduced complexity were implemented, as well as high-end Italian product design.

During the European Project AVTR "Optimal Electrical Powertrain via Adaptable Voltage and Transmission Ratio" Fraunhofer IISB was responsible for the entire battery system of an electric vehicle (EV). In general, the Fraunhofer IISB Battery System Group focuses on innovative mechanical and thermal design of battery modules and systems including the related battery management system (BMS) with battery monitoring and the according battery models.


High energy density automotive battery module with cost-optimized battery monitoring electronics developed by Fraunhofer IISB with Dräxlmaier (Germany), Panasonic (Japan), and IFEVS (Italy).

Fraunhofer IISB

The project has addressed the development and the industrialization of complete powertrain systems for light electric vehicles. In contrast to already available EVs, the international project consortium focused on a special electric vehicle that may fulfill the Japanese Kei-Car specification. The vehicle, developed by the Italian companies IFEVS and Polimodel, strictly follows four main objectives: low cost, modularity, producibility, and high-end Italian product design.

The vehicle is designed with a total length of approximately 3 meters, thus making the vehicle ideal for crowded inner-cities.

Being part of the international consortium, Fraunhofer IISB was responsible for the novel fully redundant battery system. The main objectives were attributed to the battery system, its battery management system, and battery monitoring.

The battery modules were designed in cooperation with the Dräxlmaier Group and manufactured by them. Highest modularity and independence of the battery cell manufacturer was achieved by using automotive grade 3 Ah cylindrical lithium-ion battery cells of type 18650 from an Asian battery manufacturer.

Type 18650 battery cells are in highest mass production for years now, thus providing lowest costs, low manufacturing tolerances and are available from most premium cell manufacturers. The eight battery modules provide 12 kWh of energy to the 15 kW powertrain (30 kW peak power). The modules use a 20p7s cell configuration and bring a weight of only 9.4 kg, thus providing a gravimetric energy density on battery module level (i.e., with electronics included) as high as 160 Wh/kg.

Furthermore, battery monitoring placed on battery modules followed the same objectives. Battery monitoring was optimized for lowest size and bill of materials. The PCB size could be reduced to only 47 cm², still providing best voltage measurement accuracy, temperature sensing and passive balancing.

The small size could be realized by using a highly integrated state-of-the-art battery monitoring IC with highest voltage measurement accuracy. Panasonic developed and provided novel prototypes of MOSFETs including protective elements for passive battery cell balancing. By using these novel MOSFETs, the bill of materials can be drastically reduced with positive effects on costs and reliability.

Finally, an advanced battery management system developed by Fraunhofer IISB and based on an Infineon 32 bit microcontroller running an automotive OSEK / Autosar operating system was adapted to the needs of the AVTR project and integrated into the battery system.

The BMS comprises control algorithms (e.g., power contactor control), data communication via CAN bus, and advanced safety mechanisms for protecting the battery system. This BMS was integrated into both battery systems and configured to work as independent systems. As full redundancy was implemented, the driver of the EV is able to check the state of every battery system on the dashboard and even driving with only one axle is possible at any time.

With the vehicle developed within the AVTR project, highest modularity besides low costs and reduced complexity were implemented and shown for the first time together with stylish Italian car design. The shown concepts and prototypes prove the feasibility of a light full electric vehicle with reduced complexity, reduced costs and improved modularity. This development may lead to affordable EVs, thus increasing the attractiveness of EVs for the mass market.

The final presentation of the vehicle prototype took place during the unique Parco Valentino car show along with all European Premium carmakers in June 2015 in Turin, Italy. The AVTR project has received funding from the European Union’s Seventh Framework Program for research, technological development, and demonstration under grant agreement no 314128.

Images for editorial use can be found at http://www.iisb.fraunhofer.de/presse.

Contact

Vincent Lorentz
Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Phone +49 9131 761 - 346
Fax +49 9131 761 - 360
vincent.lorentz@iisb.fraunhofer.de

Fraunhofer IISB

Founded in 1985, the Fraunhofer Institute for Integrated Systems and Device Technology IISB conducts applied research and development in the fields of power electronics, mechatronics, microelectronics, and nanoelectronics. The work of the institute in power electronic systems for energy efficiency, hybrid and electrical automobiles as well as in technology, device and material development for nanoelectronics enjoys international attention and recognition.
In the business area of power electronics, the primary focus is on topics such as innovative circuit and system solutions for highly efficient and compact power converters, mechatronic 3D integration, multifunctional integration and use of new materials and semiconductor devices. Application fields include e.g. electrical energy transmission, drive technology, switching power supplies and voltage transducers, components for vehicle technology and vehicle models, construction, and connection technology for passive and active power modules as well as lifetime and reliability tests. Fraunhofer IISB additionally has extensive experience in the area of error analysis. This applies to all levels of electronic circuits, from chips to chip contacting, housings, and circuit carriers or insulation substrates, up to passive devices.
Around 230 employees work in contract research for industry and public institutions. In addition to its headquarters in Erlangen, the IISB also has two further locations in Nuremberg and Freiberg / Saxony. The IISB closely cooperates with the Chair of Electron Devices at the Friedrich-Alexander-University Erlangen-Nuremberg.

Weitere Informationen:

http://www.iisb.fraunhofer.de/presse Press release and Images for editorial use.

Kommunikation | Fraunhofer-Gesellschaft

More articles from Power and Electrical Engineering:

nachricht Gazing into the flames of ionic winds
13.09.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Virtual technology center for efficient solar cells
11.09.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

Im Focus: Using Mirrors to Improve the Quality of Light Particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in...

Im Focus: High-speed Quantum Memory for Photons

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast data transfer in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which...

Im Focus: Discovery of the most accelerated binary pulsar

Fifty years after Jocelyn Bell discovered the first pulsar, students are no longer going through reams of paper from pen chart recorders but instead search through 1,000s of terabytes of data to find these enigmatic pulsating radio stars. The most extreme binary pulsar system so far, with accelerations of up to 70 g has been discovered by researchers at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. At their closest approach the orbit of the pulsar and its companion neutron star would easily fit inside the radius of the Sun.

Although most of the more than 2,500 pulsars known are solitary objects, a few are found in tight binary systems. The discovery of the first of these, the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Study sets new distance record for medical drone transport

13.09.2017 | Transportation and Logistics

First on-chip nanoscale optical quantum memory developed

13.09.2017 | Information Technology

Graphene based terahertz absorbers

13.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>