Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multilayer polymers spring into action

11.04.2014

Flexible plastics that turn mechanical vibrations into electrical energy could spur the development of self-powered sensors and devices

The shrinking dimensions and decreased power consumption of modern electronic gadgets have created opportunities for energy harvesting processes that tap into free, green energy from the environment. Vibration harvesters, for example, produce small amounts of electricity from everyday mechanical disturbances such as wind currents, traffic noise or footsteps.


A ‘green’ alternative to batteries that could power electronic devices is one step closer thanks to multilayered polymer cantilevers that can turn mechanical vibrations into electricity.

© Eyematrix/iStock/Thinkstock

Now, Kui Yao and co-workers from the A*STAR Institute of Materials Research and Engineering in Singapore have discovered a way to give lightweight polymer vibration harvesters a hundredfold boost in energy output — a finding that may help to eliminate manual battery recharging in microsensors and mobile devices (1).

Many vibration harvesters contain piezoelectric substances that create an electric voltage when mechanically bent. By fabricating piezoelectric materials into cantilevers that resemble a diving board, these devices can oscillate from ambient vibrations and generate electricity. Researchers often use piezoelectric ceramics because they impart large amounts of electrical charges; however, the brittleness of ceramics makes them unsuitable for prolonged and large vibrational movements.

Yao and co-workers investigated a plastic-based piezoelectric material, polyvinylidene fluoride (PVDF), which is low cost and readily undergoes mechanical strain. To make efficient vibration harvesters from PVDF, researchers must stack the polymer in multiple layers, improving the output current and reducing the electrical impedance that is inherent to piezoelectric materials. But when too many thin piezoelectric layers are stacked, the cantilever can become too stiff for bending-mode vibrational harvesting.

To optimize piezoelectric harvesting with plastic films, the team deployed an analytical approach. Developing a mathematical model of a multilayered polymer cantilever coated with metal electrodes, the researchers systematically calculated how different material parameters affected the energy output.

Their simulations revealed some often-ignored factors “such as the thinness of electrode coatings and the material’s electrical parameters,” says Yao. “These can have a dramatic effect on the electricity generated by bending multilayer polymers.”

One key parameter identified was the need to match the electrical impedance with an optimum load resistance. The researchers’ analysis showed that the energy output of a 22-layered piezoelectric structure could be from 5 to 400 times higher than a single-layer piezoelectric polymer of similar dimensions.

The team then tested the feasibility of their analytical results by fabricating a PVDF-based vibrational harvester on a flexible aluminum substrate. They used scalable dip-coating procedures to build up polymer multilayers and ensured thin metal electrode coatings with physical vapor deposition techniques.

“Our experimental results are promising and show that, for many practical applications, piezoelectric polymer multilayers may enable harvested energy to replace batteries,” notes Yao.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering 

Associated links

Journal information

Zhang, L., Oh, S. R., Wong, T. C., Tan, C. Y. & Yao, K. Piezoelectric polymer multilayer on flexible substrate for energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 60, 2013–2020 (2013)

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Trojan Transit Rolling Out
27.03.2015 | University of Arkansas at Little Rock

nachricht Ultra-Thin Silicon Films Create Vibrant Optical Colors
25.03.2015 | University of Alabama Huntsville

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

BLS Cargo orders 15 multisystem locomotives

30.03.2015 | Press release

Shark Tagged by NSU’s Guy Harvey Research Institute Is Apparently Enjoying Time in Warm, Tropical Waters

30.03.2015 | Life Sciences

Antarctic Ice Shelves Rapidly Thinning

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>