Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multilayer polymers spring into action


Flexible plastics that turn mechanical vibrations into electrical energy could spur the development of self-powered sensors and devices

The shrinking dimensions and decreased power consumption of modern electronic gadgets have created opportunities for energy harvesting processes that tap into free, green energy from the environment. Vibration harvesters, for example, produce small amounts of electricity from everyday mechanical disturbances such as wind currents, traffic noise or footsteps.

A ‘green’ alternative to batteries that could power electronic devices is one step closer thanks to multilayered polymer cantilevers that can turn mechanical vibrations into electricity.

© Eyematrix/iStock/Thinkstock

Now, Kui Yao and co-workers from the A*STAR Institute of Materials Research and Engineering in Singapore have discovered a way to give lightweight polymer vibration harvesters a hundredfold boost in energy output — a finding that may help to eliminate manual battery recharging in microsensors and mobile devices (1).

Many vibration harvesters contain piezoelectric substances that create an electric voltage when mechanically bent. By fabricating piezoelectric materials into cantilevers that resemble a diving board, these devices can oscillate from ambient vibrations and generate electricity. Researchers often use piezoelectric ceramics because they impart large amounts of electrical charges; however, the brittleness of ceramics makes them unsuitable for prolonged and large vibrational movements.

Yao and co-workers investigated a plastic-based piezoelectric material, polyvinylidene fluoride (PVDF), which is low cost and readily undergoes mechanical strain. To make efficient vibration harvesters from PVDF, researchers must stack the polymer in multiple layers, improving the output current and reducing the electrical impedance that is inherent to piezoelectric materials. But when too many thin piezoelectric layers are stacked, the cantilever can become too stiff for bending-mode vibrational harvesting.

To optimize piezoelectric harvesting with plastic films, the team deployed an analytical approach. Developing a mathematical model of a multilayered polymer cantilever coated with metal electrodes, the researchers systematically calculated how different material parameters affected the energy output.

Their simulations revealed some often-ignored factors “such as the thinness of electrode coatings and the material’s electrical parameters,” says Yao. “These can have a dramatic effect on the electricity generated by bending multilayer polymers.”

One key parameter identified was the need to match the electrical impedance with an optimum load resistance. The researchers’ analysis showed that the energy output of a 22-layered piezoelectric structure could be from 5 to 400 times higher than a single-layer piezoelectric polymer of similar dimensions.

The team then tested the feasibility of their analytical results by fabricating a PVDF-based vibrational harvester on a flexible aluminum substrate. They used scalable dip-coating procedures to build up polymer multilayers and ensured thin metal electrode coatings with physical vapor deposition techniques.

“Our experimental results are promising and show that, for many practical applications, piezoelectric polymer multilayers may enable harvested energy to replace batteries,” notes Yao.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering 

Associated links

Journal information

Zhang, L., Oh, S. R., Wong, T. C., Tan, C. Y. & Yao, K. Piezoelectric polymer multilayer on flexible substrate for energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 60, 2013–2020 (2013)

A*STAR Research | Research SEA News
Further information:

More articles from Power and Electrical Engineering:

nachricht “move“ – on course for the mobility of the future
25.11.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Tandem solar cells are simply better
23.11.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Plant Defense as a Biotech Tool

25.11.2015 | Life Sciences

“move“ – on course for the mobility of the future

25.11.2015 | Power and Electrical Engineering

Understanding a missing link in how antidepressants work

25.11.2015 | Life Sciences

More VideoLinks >>>