Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize hybrid looks promising for biofuel

21.02.2012
Scientists at the University of Illinois at Urbana-Champaign have identified a new contender in the bioenergy race: a temperate and tropical maize hybrid.
Their findings, published in GCB Bioenergy, show that the maize hybrid is potentially capable of producing ethanol from biomass (plant material used for biofuel production) at levels equal to or greater than ethanol produced from grain harvested from current commercial maize hybrids.

"Our maize hybrid, when grown using the same amount of fertilizer as commercial grain hybrids, produced 15-20% more biomass than the commercial hybrids." said Dr. Frederick Below, Professor of Crop Physiology at the University of Illinois.

The scientists selected plants with different genetic combinations created from a hybridization of temperate and tropical maize in order to incorporate beneficial characteristics of both tropical and temperate maize. Accustomed to a tropical climate, the tropical parent plant experiences a much longer growing season in the Midwest than temperate varieties. Temperate maize minimizes the negative traits of tropical maize such as disease and pest vulnerability while maximizing positive traits such as drought tolerance. Both parent plants combine to form a hybrid that grows larger and accumulates more stalk sugars than conventional grain hybrids, factors that increase ethanol output.

The scientists discovered that the hybrids are capable of producing as much ethanol per acre as maize currently grown for ethanol made from grain, but the hybrids require less input such as fertilizers like nitrogen and the ethanol could be produced from the vegetative plant material.

According to Dr. Below, "the temperate and tropical maize hybrid has the potential to produce the same amount of ethanol as commercial grain hybrids, but with lower nitrogen fertilizer requirements. This difference makes the hybrid more energy efficient and can result in a more sustainable environmental life cycle."

Maize is often criticized by the scientific community as a poor choice for ethanol given the toll fertilizers can have on the environment. But as Dr. Below and his team have shown, the hybrid will significantly lessen the need for fertilizer application and provide an alternative, more environmentally sustainable feedstock for biofuel production.

While this new hybrid may be in its early stages, a wealth of information about maize has been long established, allowing for rapid improvements.

This paper is published in GCB Bioenergy. To request a copy contact GCB-Bioenergy@igb.uiuc.eduor 217-333-9651.

Rhea Kressman | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>