Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lignin 'lite' switchgrass boosts biofuel yield by more than one-third

15.02.2011
Bioethanol from new lines of native perennial prairie grass could become less costly because of plant engineering by The Samuel Roberts Noble Foundation and fermentation research at Oak Ridge National Laboratory.

In a paper published in the Proceedings of the National Academy of Sciences, researchers describe their transgenic version of switchgrass as one that produces about one-third more ethanol by fermentation than conventional switchgrass. This improved plant feedstock will be able to generate more biofuel per acre, benefiting not only the transportation sector but also the growers and farming community.

"Recalcitrance, or a plant's natural defenses against insects, fungus and the weather, is widely acknowledged as being the single biggest barrier to the production of biofuel and biochemicals from switchgrass and other lignocellulosic materials," said Jonathan Mielenz, a co-author and member of the Department of Energy lab's BioEnergy Science Center.

For years researchers have sought better ways to break down the plant's defense system, and while substantial progress has been reported, recalcitrance remains a significant challenge.

Despite this obstacle, switchgrass holds great promise as a bioenergy feedstock because it is a native perennial plant, grows with high yields and requires little nitrogen and water. These characteristics made it an attractive target for transgenic improvements.

To achieve their goal, a team led by Zeng Yu Wang of The Samuel Roberts Noble Foundation in Ardmore, Okla., chose to "downregulate" - a process that involves decreasing a cellular component - the caffeic acid 3-O-methyltransferase, or COMT, gene - in the Alamo variety of switchgrass. This change decreased the plant's structural "glue," lignin, by about one-eighth. The scientists chose this gene based on encouraging results of lignin modification from previous Noble research conducted in alfalfa and other plant species.

What the team from the Noble Foundation ended up with, as discovered by a team led by Mielenz, is a switchgrass that is more easily converted to biofuels under milder conditions and with much lower costly additions during fermentation.

"The presence of lignin in plant cell walls interferes with the fermentation to produce biofuels," said Wang, who noted that enzymes are the single largest processing cost component for bioconversion of biomass after the biomass itself. "The transgenic lines require lower temperature preprocessing and only one-quarter to one-third the level of enzymes for equivalent ethanol fermentation compared to the unmodified switchgrass. This significantly lowers the cost of biofuels and biochemicals from this switchgrass."

The paper, titled "Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass," will be published online this week. Other authors are Chunxiang Fu, Xirong Xiao, Yaxin Ge, Fang Chen, Joseph Bouton, and Richard Dixon of The Samuel Roberts Noble Foundation, Choo Hamilton and Miguel Rodriguez of ORNL, and Marc Foston and Art Ragauskas of Georgia Institute of Technology.

Supporting the research were the Department of Agriculture and the DOE Office of Science through ORNL's BioEnergy Science Center. UT-Battelle manages ORNL for DOE's Office of Science.

The BioEnergy Science Center is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The centers are led, respectively, by ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

The Samuel Roberts Noble Foundation is a nonprofit organization conducting agricultural, forage improvement and plant biology research; assisting farmers and ranchers through educational and consultative agricultural programs; and providing grants to nonprofit charitable, educational and health organizations.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20110214-00

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>