Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth of ~50 nm-diameter multi-walled carbon nanocoils

14.07.2011
Carbon nanocoils (CNCs) are composed of helical shaped carbon nanofibers and show promise as fillers, electromagnetic wave absorbers, and tactile sensors.

However, in spite of the tremendous efforts to produce contrary, the vast majority of CNCs are amorphous, exhibiting larger fiber and coil diameters than carbon nanotubes.

In an attempt to resolve this issue, Masashi Yokota and colleagues at Toyohashi University of Technology in Japan report the growth of thin CNCs with coil diameters of 50 nm by catalytic chemical vapor deposition (CCVD).

The thin CNCs were synthesized by the following procedure: mixing Fe and Sn powders and Y-type zeolite in dilute hydrochloric acid solution; sonicating the resulting solution and drying in a furnace; passing a gas mixture of C2H2/N2 over the zeolite with the Fe and Sn catalysts in a quartz tube reactor at 700°C.

The thin CNCs had fiber and coil diameters of 15 nm and 50 nm, respectively, with a hollow and multi-walled structure of cylindrical graphitic layers. The researchers refer to the thin CNCs as ‘multi-walled CNC’, which had a left hand helix that was confirmed by electron tomography.

Reducing the diameter of the CNCs induced the structural changes from amorphous to graphitic, which implies the enhancement of the electrical as well as mechanical characteristics. This multi-walled CNCs may find applications in battery technology and nanoelectromechanical systems.

Reference:
Masashi Yokota, Yoshiyuki Suda, Hirofumi Takikawa, Hitoshi Ue, Kazuki Shimizu, and Yoshito Umeda.Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite.Journal of Nanoscience and Nanotechnology 11, 2344–2348 (2011).Digital Object Identifier (DOI): 10.1166/jnn.2011.3126Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology.Department website: http://www.tut.ac.jp/english/introduction/department02.html

Yoshiyuki Suda | Toyohashi University
Further information:
http://www.tut.ac.jp/english/newsletter/research_highlights/research02.html

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>