Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth of ~50 nm-diameter multi-walled carbon nanocoils

14.07.2011
Carbon nanocoils (CNCs) are composed of helical shaped carbon nanofibers and show promise as fillers, electromagnetic wave absorbers, and tactile sensors.

However, in spite of the tremendous efforts to produce contrary, the vast majority of CNCs are amorphous, exhibiting larger fiber and coil diameters than carbon nanotubes.

In an attempt to resolve this issue, Masashi Yokota and colleagues at Toyohashi University of Technology in Japan report the growth of thin CNCs with coil diameters of 50 nm by catalytic chemical vapor deposition (CCVD).

The thin CNCs were synthesized by the following procedure: mixing Fe and Sn powders and Y-type zeolite in dilute hydrochloric acid solution; sonicating the resulting solution and drying in a furnace; passing a gas mixture of C2H2/N2 over the zeolite with the Fe and Sn catalysts in a quartz tube reactor at 700°C.

The thin CNCs had fiber and coil diameters of 15 nm and 50 nm, respectively, with a hollow and multi-walled structure of cylindrical graphitic layers. The researchers refer to the thin CNCs as ‘multi-walled CNC’, which had a left hand helix that was confirmed by electron tomography.

Reducing the diameter of the CNCs induced the structural changes from amorphous to graphitic, which implies the enhancement of the electrical as well as mechanical characteristics. This multi-walled CNCs may find applications in battery technology and nanoelectromechanical systems.

Reference:
Masashi Yokota, Yoshiyuki Suda, Hirofumi Takikawa, Hitoshi Ue, Kazuki Shimizu, and Yoshito Umeda.Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite.Journal of Nanoscience and Nanotechnology 11, 2344–2348 (2011).Digital Object Identifier (DOI): 10.1166/jnn.2011.3126Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology.Department website: http://www.tut.ac.jp/english/introduction/department02.html

Yoshiyuki Suda | Toyohashi University
Further information:
http://www.tut.ac.jp/english/newsletter/research_highlights/research02.html

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>