Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth of ~50 nm-diameter multi-walled carbon nanocoils

14.07.2011
Carbon nanocoils (CNCs) are composed of helical shaped carbon nanofibers and show promise as fillers, electromagnetic wave absorbers, and tactile sensors.

However, in spite of the tremendous efforts to produce contrary, the vast majority of CNCs are amorphous, exhibiting larger fiber and coil diameters than carbon nanotubes.

In an attempt to resolve this issue, Masashi Yokota and colleagues at Toyohashi University of Technology in Japan report the growth of thin CNCs with coil diameters of 50 nm by catalytic chemical vapor deposition (CCVD).

The thin CNCs were synthesized by the following procedure: mixing Fe and Sn powders and Y-type zeolite in dilute hydrochloric acid solution; sonicating the resulting solution and drying in a furnace; passing a gas mixture of C2H2/N2 over the zeolite with the Fe and Sn catalysts in a quartz tube reactor at 700°C.

The thin CNCs had fiber and coil diameters of 15 nm and 50 nm, respectively, with a hollow and multi-walled structure of cylindrical graphitic layers. The researchers refer to the thin CNCs as ‘multi-walled CNC’, which had a left hand helix that was confirmed by electron tomography.

Reducing the diameter of the CNCs induced the structural changes from amorphous to graphitic, which implies the enhancement of the electrical as well as mechanical characteristics. This multi-walled CNCs may find applications in battery technology and nanoelectromechanical systems.

Reference:
Masashi Yokota, Yoshiyuki Suda, Hirofumi Takikawa, Hitoshi Ue, Kazuki Shimizu, and Yoshito Umeda.Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite.Journal of Nanoscience and Nanotechnology 11, 2344–2348 (2011).Digital Object Identifier (DOI): 10.1166/jnn.2011.3126Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology.Department website: http://www.tut.ac.jp/english/introduction/department02.html

Yoshiyuki Suda | Toyohashi University
Further information:
http://www.tut.ac.jp/english/newsletter/research_highlights/research02.html

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>