Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Next Generation of Tidal Stream Power Plants

18.03.2013
Siemens continues to develop its technology for tidal stream power plants. In the future, the new model will deliver higher performance at lower costs due to optimized construction.

Today, the SeaGen power plant in a northern Irish narrows has an installed capacity of 1.2 megawatts (MW). The SeaGen-S will deliver two MW.



The Welsh government has now approved the construction of five of these turbines for a ten MW power plant off the northwestern coast of Wales. It is scheduled to go into service in 2015 and supply around 10,000 homes with environmentally friendly electricity.

The new rotors are the most apparent change in construction. Their diameter has been increased to 20 meters and each of them has been equipped with an additional rotor blade. That means that the new model looks somewhat like an underwater windmill. The Siemens experts promise that the new rotors will be better able to distribute the pressure of the water current. This in turn will reduce wear and lengthen the service life of the power plant.

The company wants to build more power plants using the SeaGen-S in underwater arrays similar to the one in Wales. In that way, large amounts of electricity could be brought together - as is the case with wind farms - and transmitted to the mainland. The construction of arrays also makes sense when the topological requirements for tidal stream power plants are taken into consideration. By contrast to tidal barrage power plants, tidal stream units don't require a dam. But that means that these power plants won't work just anywhere - they should only be constructed in locations with especially strong currents.

SeaGen is located at just such place, the narrows between the natural harbor of Strangford Lough and the Irish Sea. Here the water flows at a constant speed of more than 4.7 knots - corresponding to 2.4 meters per second.

Driven by this current the rotors of the power plant turn ten to 15 times per minute. The 1.2 megawatts generated by SeaGen supplies electricity to around 1,500 households.

In October 2012 SeaGen reached three significant milestones for commercial power generation. The facility has now generated 22.53 megawatt hours of electricity in one day, one gigawatt hour in 68 days, and a total of six gigawatt hours since the middle of 2008.

With these achievements, the technology has taken an important step toward commercialization and market maturity. For the development of the SeaGen-S, engineers have turned to the data that has been collected during the SeaGen's 25,000 operating hours to date.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Jet Stream Northern Irish Power Plant Technology SeaGen-S power plant

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>