Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Fluids Quicken Workpiece Fixation

16.04.2010
Some workpieces are quite sensitive and can be damaged when clamped in a vise. That is why researchers at Saarland University, Germany, developed a procedure in which such workpieces can be held by a fluid. Upon activating a magnetic field, the fluid containing iron particles solidifies within fractions of a second to a firm negative of the workpiece.

In this way, the workpiece is held gently, can be machined precisely and is protected from vibrations. The new fixation technology has already been tested in the aircraft industry and will be presented by the scientists at the Hannover Fair, from April 19th to 23rd. The Saarland research booth C44 is located in Hall 2.

A flip of a switch is enough to convert the oily, honey-like liquid into a firm and tough substance with the appearance of dried-out clay. This effect is a special property of so-called magneto-rheological fluids. Most of them are silicon or mineral oil suspensions with an even distribution of ferrous particles. By exposing the fluids to a magnetic field the particles immediately orient themselves in the direction of one of the poles. "This effect has been known for more than 50 years. To use it in an industrial context for the fixation of workpieces, it was necessary to solve several problems", explains Harmut Janocha, professor for Process Automation at Saarland University.

His team investigates how the substances can be used to fix workpieces and how they can be implemented in other applications. The research also focuses on how to create an optimised magnetic circuit for different applications. In the European funded cooperative project Maffix, it has been possible to implement and test the new technology in the aircraft industry. Until now it was necessary to clamp titanium frame members, used to stabilize the body of the aircraft, in a complex way before machining. Titanium has the property to easily retract to its original form (memory effect), making it impossible to correct even the smallest, unwanted deformation.

"By using our fixation system the steps involved in the process could be shortened in a significant way, since the frame members could be inserted into the liquid without any additional fixation elements. The fixation now only requires half the time", added Professor Janocha. Due to this fact the production process has been improved enormously, since fixation of the workpieces took up more than half the overall time of processing. "Now it is possible to process the workpieces in a gentler way, since they are protected against vibrations during milling and bevelling", pointed out Janocha.

The European Maffix project, which was funded until October 2008 with about one million Euro, included cooperation with the Fraunhofer Institute for Silicate Research in Würzburg, as well as companies from Spain, Germany, Italy and Romania. The task of the research project was to develop novel fixation systems for workpieces with the help of this special fluid.

Contact:

Thomas Würtz
Lehrstuhl für Prozessautomatisierung (LPA)
Universität des Saarlandes
Tel.: +49(0) 681 302- 57591
Tel. +49 (0) 511 / 89 49 71 01 (Telefon am Messestand)
tw@zip.uni-sb.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://maffix.fatronik.com
http://www.lpa.uni-saarland.de
http://www.uni-saarland.de/pressefotos

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>