Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Fluids Quicken Workpiece Fixation

16.04.2010
Some workpieces are quite sensitive and can be damaged when clamped in a vise. That is why researchers at Saarland University, Germany, developed a procedure in which such workpieces can be held by a fluid. Upon activating a magnetic field, the fluid containing iron particles solidifies within fractions of a second to a firm negative of the workpiece.

In this way, the workpiece is held gently, can be machined precisely and is protected from vibrations. The new fixation technology has already been tested in the aircraft industry and will be presented by the scientists at the Hannover Fair, from April 19th to 23rd. The Saarland research booth C44 is located in Hall 2.

A flip of a switch is enough to convert the oily, honey-like liquid into a firm and tough substance with the appearance of dried-out clay. This effect is a special property of so-called magneto-rheological fluids. Most of them are silicon or mineral oil suspensions with an even distribution of ferrous particles. By exposing the fluids to a magnetic field the particles immediately orient themselves in the direction of one of the poles. "This effect has been known for more than 50 years. To use it in an industrial context for the fixation of workpieces, it was necessary to solve several problems", explains Harmut Janocha, professor for Process Automation at Saarland University.

His team investigates how the substances can be used to fix workpieces and how they can be implemented in other applications. The research also focuses on how to create an optimised magnetic circuit for different applications. In the European funded cooperative project Maffix, it has been possible to implement and test the new technology in the aircraft industry. Until now it was necessary to clamp titanium frame members, used to stabilize the body of the aircraft, in a complex way before machining. Titanium has the property to easily retract to its original form (memory effect), making it impossible to correct even the smallest, unwanted deformation.

"By using our fixation system the steps involved in the process could be shortened in a significant way, since the frame members could be inserted into the liquid without any additional fixation elements. The fixation now only requires half the time", added Professor Janocha. Due to this fact the production process has been improved enormously, since fixation of the workpieces took up more than half the overall time of processing. "Now it is possible to process the workpieces in a gentler way, since they are protected against vibrations during milling and bevelling", pointed out Janocha.

The European Maffix project, which was funded until October 2008 with about one million Euro, included cooperation with the Fraunhofer Institute for Silicate Research in Würzburg, as well as companies from Spain, Germany, Italy and Romania. The task of the research project was to develop novel fixation systems for workpieces with the help of this special fluid.

Contact:

Thomas Würtz
Lehrstuhl für Prozessautomatisierung (LPA)
Universität des Saarlandes
Tel.: +49(0) 681 302- 57591
Tel. +49 (0) 511 / 89 49 71 01 (Telefon am Messestand)
tw@zip.uni-sb.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://maffix.fatronik.com
http://www.lpa.uni-saarland.de
http://www.uni-saarland.de/pressefotos

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>