Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Findings About Wind Farms Could Lead to Expanding Their Use

Wind power is likely to play a large role in the future of sustainable, clean energy, but wide-scale adoption has remained elusive. Now, researchers have found wind farms’ effects on local temperatures and proposed strategies for mediating those effects, increasing the potential to expand wind farms to a utility-scale energy resource.

Led by University of Illinois professor of atmospheric sciences Somnath Baidya Roy, the research team will publish its findings in the Proceedings of the National Academy of Sciences. The paper will appear in the journal’s Online Early Edition this week.

Roy first proposed a model describing the local climate impact of wind farms in a 2004 paper. But that and similar subsequent studies have been based solely on models because of a lack of available data. In fact, no field data on temperature were publicly available for researchers to use, until Roy met Neil Kelley at a 2009 conference. Kelley, a principal scientist at the National Wind Technology Center, part of the National Renewable Energy Laboratory, had collected temperature data at a wind farm in San Gorgonio, Calif., for more than seven weeks in 1989.

Analysis of Kelley’s data corroborated Roy’s modeling studies and provided the first observation-based evidence of wind farms’ effects on local temperature. The study found that the area immediately surrounding turbines was slightly cooler during the day and slightly warmer at night than the rest of the region.

As a small-scale modeling expert, Roy was most interested in determining the processes that drive the daytime cooling and nocturnal warming effects. He identified an enhanced vertical mixing of warm and cool air in the atmosphere in the wake of the turbine rotors. As the rotors turn, they generate turbulence, like the wake of a speedboat motor. Upper-level air is pulled down toward the surface while surface-level air is pushed up, causing warmer and cooler air to mix.

The question for any given wind-farm site then becomes, will warming or cooling be the predominant effect?

“It depends on the location,” Roy said. “For example, in the Great Plains region, the winds are typically stronger at night, so the nocturnal effect may dominate. In a region where daytime winds are stronger – for example a sea breeze – then the cooling effect will dominate. It’s a very location-specific thing.”

Many wind farms, especially in the Midwestern United States, are located on farmland. According to Roy, the nocturnal warming effect could offer farmland some measure of frost protection and may even slightly extend the growing season.

Understanding the temperature effects and the processes that cause them also allows researchers to develop strategies to mitigate wind farms’ impact on local climate. The group identified two possible solutions. First, engineers could develop low-turbulence rotors. Less turbulence would not only lead to less vertical mixing and therefore less climate impact, but also would be more efficient for energy generation. However, research and development for such a device could be a costly, labor-intensive process.

The second mediation strategy is locational. Turbulence from the rotors has much less consequence in an already turbulent atmosphere. The researchers used global data to identify regions where temperature effects of large wind farms are likely to be low because of natural mixing in the atmosphere, providing ideal sites.

“These regions include the Midwest and the Great Plains as well as large parts of Europe and China,” Roy said. “This was a very coarse-scale study, but it would be easy to do a local-scale study to compare possible locations.”

Next, Roy’s group will generate models looking at both temperature and moisture transport using data from and simulations of commercial rotors and turbines. They also plan to study the extent of the thermodynamic effects, both in terms of local magnitude and of how far downwind the effects spread.

“The time is right for this kind of research so that, before we take a leap, we make sure it can be done right,” Roy said. “We want to identify the best way to sustain an explosive growth in wind energy over the long term. Wind energy is likely to be a part of the solution to the atmospheric carbon dioxide and the global warming problem. By indentifying impacts and potential mitigation strategies, this study will contribute to the long-term sustainability of wind power.”

Liz Ahlberg | University of Illinois
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>