Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European project breaks efficiency record by converting sunlight in electricity

20.11.2008
Scientists of the Commission-financed project FULLSPECTRUM have developed photovoltaic (PV) multi-junction (MJ) solar cells which are able to convert 39,7 % of the energy of sun light into electricity. This is the highest percentage ever reached in Europe, according to researchers after their final workshop today in El Escorial, Spain.

The main barrier to large-scale deployment of PV systems is the high production cost of electricity, due to the significant capital investment costs. Research is engaged to reduce manufacturing costs and to raise the efficiency of the cells. Today conventional PV cells made of silicon are converting only a fraction of the solar light spectrum around 17%.

FULLSPECTRUM's multi-junction solar cells are able to catch more sun light energy due to their composition of different materials, including gallium, phosphorus, indium and germanium. These multi-junction solar cells are expensive and have only been used for applications in space. However, the cost can be considerably reduced by arranging them in special panels witch include lenses that focus a large amount of solar energy onto the cells. These concentrators can reach far above 1000 times the natural solar power flux and have also been the object of the project research.

FULLSPECTRUM is an integrated project involving 19 European public and industrial research centres from seven EU Member States, as well as Russia and Switzerland. It is coordinated by the Universidad Politécnica de Madrid, Instituto de Energía Solar and started in November 2003 with an overall budget of € 14,7 Million of with the European Commission financed € 8.4 Million.

Background

The European Commission has spent more than € 105 Million in research on photovoltaic energy since the start of Framework Programme 6 in 2002. Many of the projects are trying to get production costs of silicon solar cells down.

Energy research is constituent of the European Union Energy and Climate Package. One of its ambitious targets for 2020 is to increase by up to 20% the level of renewable energy in the EU's overall final energy consumption. To reach this goal the European Commission started the Strategic Energy Technology (SET)-Plan.

The Solar Europe Industrial Initiative as part of the SET-Plan has recently elevated its target for the participation of photovoltaics in the European electricity demand by 2020 from 3% to 12%. This can be translated into installing from 350 up to 400 GW P (Gigawatt of peak capacity) in photovoltaics, corresponding to an average growth of ~40% per year from today's situation.

Back in 2006, the total installed capacity of PV systems in the EU was 3,4 GW P , representing approximately 0,5% of the total EU electrical capacity. The electricity generated by PV was approximately 2,5 TWh (Terawatthour), or 0,1% of the demand. The annual installations of PV systems in 2006 in the EU reached 1250 Megawatt.

Florian Frank | alfa
Further information:
http://www.fullspectrum-eu.org/1_0.html
http://ec.europa.eu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>