Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Code of Conduct paves way for significant energy savings in Data Centres across Europe

20.11.2008
In 2007 Data Centres, housing computer servers for industry, enterprises and administrations across Europe, consumed 56TWh of electricity, close to the yearly total electricity consumption of the Czech Republic.

If no specific action to improve the energy efficiency is taken, electricity consumption of data centres is expected to rise to 104TWh a year by 2020. Furthermore, CO2 emissions from the IT-sector, estimated to be 2% of total global CO2 emissions, equivalent to that of the airline industry, would increase significantly.

The EU Code of Conduct for Data Centres launched today by the European Commission provides guidelines, recommendations and best practices, which could lead to a reduction in energy consumption of data centres of up to 20%. This work is in line with the 2020 energy saving targets making an important contribution within the ICT sector.

The key aim of the Code of Conduct is "to inform and stimulate Data Centre operators to reduce energy consumption in a cost-effective manner without hampering the critical function of the facility". This is achieved through a series of best practice recommendations which focus on design in areas such as software, IT architecture and infrastructure. Industry has responded extremely positively to the code, and a number of operators have already started to implement many of the best practices from earlier drafts of the code of conduct.

The European Commission's Joint Research Centre, is a provider of scientific-technical support to EU policy making and as such has initiated this and other codes of conducts in the energy efficiency area . Developed over the last two years, reviewed and refined by a wealth of stakeholders including industry experts from both data centre owners and operators, as well as equipment vendors and Member State experts, the code has become regarded as “the source of information to run an energy efficient Data Centre”.

Best practices
The Code of Conduct covers many best practice options. Three of the main areas for energy saving are:

o IT equipment: This includes efficient servers and virtualisation: instead of having many servers running at low utilisation, virtual servers are created inside a few servers, thus allowing the server to run at full load, which is more efficient and can result in other servers being switched off.

o Environmental conditions: Servers dissipate a significant amount of heat. Currently server rooms are cooled to low temperatures (e.g. 22°C). This strict temperature regime is not necessary as server rooms can operate at 30° and higher degrees of humidity, therefore eliminating the need to “overcool” Data Centres.

o Efficient management of environmental conditions: air conditioning and air management is one of the key energy demands. Poorly designed Data Centres mix cold and hot air (as in a normal office), but best practice is to keep them well separated, and to provide cooling exactly where it is needed on the server CPUs. In addition to the extended temperature ranges, Data Centres could run on natural cooling as opposed to cold air produced by chillers.

Berta Duane | alfa
Further information:
http://ec.europa.eu
http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative_data%20centers.htm

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>