Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic nose created to detect skin vapors

23.07.2009
A team of researchers from the Yale University (United States) and a Spanish company have developed a system to detect the vapours emitted by human skin in real time. The scientists think that these substances, essentially made up of fatty acids, are what attract mosquitoes and enable dogs to identify their owners.

"The spectrum of the vapours emitted by human skin is dominated by fatty acids. These substances are not very volatile, but we have developed an 'electronic nose' able to detect them", Juan Fernández de la Mora, of the Department of Mechanical Engineering at Yale University (United States) and co-author of a study recently published in the Journal of the American Society for Mass Spectrometry, tells SINC.

The system, created at the Boecillo Technology Park in Valladolid, works by ionising the vapours with an electrospray (a cloud of electrically-charged drops), and later analysing these using mass spectrometry. This technique can be used to identify many of the vapour compounds emitted by a hand, for example.

"The great novelty of this study is that, despite the almost non-existent volatility of fatty acids, which have chains of up to 18 carbon atoms, the electronic nose is so sensitive that it can detect them instantaneously", says Fernández de la Mora. The results show that the volatile compounds given off by the skin are primarily fatty acids, although there are also others such as lactic acid and pyruvic acid.

The researcher stresses that the great chemical wealth of fatty acids, made up of hundreds of different molecules, "is well known, and seems to prove the hypothesis that these are the key substances that enable dogs to identify people". The enormous range of vapours emitted by human skin and breath may not only enable dogs to recognise their owners, but also help mosquitoes to locate their hosts, according to several studies.

World record for detecting explosives

Aside from identifying people from their skin vapours, another of the important applications of the new system is that it is able to detect tiny amounts of explosives. The system can "smell" levels below a few parts per trillion, and has been able to set a world sensitivity record at "2x10-14 atmospheres of partial pressure of TNT (the explosive trinitrotoluene)".

The "father" of ionisation using the mass spectrometry electrospray is Professor John B. Fenn, who is currently a researcher at the University of Virginia (United States), and in 2002 won the Nobel Prize in Chemistry for using this technique in the analysis of proteins.

References: Pablo Martínez Lozano y Juan Fernández de la Mora. "On-line Detection of Human Skin Vapors". Journal of the American Society for Mass Spectrometry 20 (6): 1060-1063, 2009.

Pablo Martínez Lozano, Juan Rus, Gonzalo Fernández de la Mora, Marta Hernández, y Juan Fernández de la Mora. "Secondary Electrospray Ionization (SESI) of Ambient Vapors for Explosive Detection at Concentrations Below Parts Per Trillion". Journal of the American Society for Mass Spectrometry 20 (2): 287-294, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>