Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drawing inspiration from nature to build a better radio

08.06.2009
New radio chip mimics human ear, could enable universal radio

MIT engineers have built a fast, ultra-broadband, low-power radio chip, modeled on the human inner ear, that could enable wireless devices capable of receiving cell phone, Internet, radio and television signals.

Rahul Sarpeshkar, associate professor of electrical engineering and computer science, and his graduate student, Soumyajit Mandal, designed the chip to mimic the inner ear, or cochlea. The chip is faster than any human-designed radio-frequency spectrum analyzer and also operates at much lower power.

"The cochlea quickly gets the big picture of what's going on in the sound spectrum," said Sarpeshkar. "The more I started to look at the ear, the more I realized it's like a super radio with 3,500 parallel channels."

Sarpeshkar and his students describe their new chip, which they have dubbed the "radio frequency (RF) cochlea," in a paper to be published in the June issue of the IEEE Journal of Solid-State Circuits. They have also filed for a patent to incorporate the RF cochlea in a universal or software radio architecture that is designed to efficiently process a broad spectrum of signals including cellular phone, wireless Internet, FM, and other signals.

Copying the cochlea
The RF cochlea mimics the structure and function of the biological cochlea, which uses fluid mechanics, piezoelectrics and neural signal processing to convert sound waves into electrical signals that are sent to the brain.

As sound waves enter the cochlea, they create mechanical waves in the cochlear membrane and the fluid of the inner ear, activating hair cells (cells that cause electrical signals to be sent to the brain). The cochlea can perceive a 100-fold range of frequencies -- in humans, from 100 to 10,000 Hz. Sarpeshkar used the same design principles in the RF cochlea to create a device that can perceive signals at million-fold higher frequencies, which includes radio signals for most commercial wireless applications.

The device demonstrates what can happen when researchers take inspiration from fields outside their own, says Sarpeshkar.

Above: Rahul Sarpeshkar discusses research and education in his group and the intellectual challenge facing engineers at the frontiers of bioelectronics

"Somebody who works in radio would never think of this, and somebody who works in hearing would never think of it, but when you put the two together, each one provides insight into the other," he says. For example, in addition to its use for radio applications, the work provides an analysis of why cochlear spectrum analysis is faster than any known spectrum-analysis algorithm. Thus, it sheds light on the mechanism of hearing as well.

The RF cochlea, embedded on a silicon chip measuring 1.5 mm by 3 mm, works as an analog spectrum analyzer, detecting the composition of any electromagnetic waves within its perception range. Electromagnetic waves travel through electronic inductors and capacitors (analogous to the biological cochlea's fluid and membrane). Electronic transistors play the role of the cochlea's hair cells.

The analog RF cochlea chip is faster than any other RF spectrum analyzer and consumes about 100 times less power than what would be required for direct digitization of the entire bandwidth. That makes it desirable as a component of a universal or "cognitive" radio, which could receive a broad range of frequencies and select which ones to attend to.

Biological inspiration
This is not the first time Sarpeshkar has drawn on biology for inspiration in designing electronic devices. Trained as an engineer but also a student of biology, he has found many similar patterns in the natural and man-made worlds (http://www.rle.mit.edu/avbs). For example, Sarpeshkar's group, in MIT's Research Laboratory of Electronics, has also developed an analog speech-synthesis chip inspired by the human vocal tract and a novel analysis-by-synthesis technique based on the vocal tract. The chip's potential for robust speech recognition in noise and its potential for voice identification have several applications in portable devices and security applications.

The researchers have built circuits that can analyze heart rhythms for wireless heart monitoring, and are also working on projects inspired by signal processing in cells. In the past, his group has worked on hybrid analog-digital signal processors inspired by neurons in the brain.

Sarpeshkar says that engineers can learn a great deal from studying biological systems that have evolved over hundreds of millions of years to perform sensory and motor tasks very efficiently in noisy environments while using very little power.

"Humans have a long way to go before their architectures will successfully compete with those in nature, especially in situations where ultra-energy-efficient or ultra-low-power operation are paramount," he said. Nevertheless, "We can mine the intellectual resources of nature to create devices useful to humans, just as we have mined her physical resources in the past.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>