Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drawing inspiration from nature to build a better radio

08.06.2009
New radio chip mimics human ear, could enable universal radio

MIT engineers have built a fast, ultra-broadband, low-power radio chip, modeled on the human inner ear, that could enable wireless devices capable of receiving cell phone, Internet, radio and television signals.

Rahul Sarpeshkar, associate professor of electrical engineering and computer science, and his graduate student, Soumyajit Mandal, designed the chip to mimic the inner ear, or cochlea. The chip is faster than any human-designed radio-frequency spectrum analyzer and also operates at much lower power.

"The cochlea quickly gets the big picture of what's going on in the sound spectrum," said Sarpeshkar. "The more I started to look at the ear, the more I realized it's like a super radio with 3,500 parallel channels."

Sarpeshkar and his students describe their new chip, which they have dubbed the "radio frequency (RF) cochlea," in a paper to be published in the June issue of the IEEE Journal of Solid-State Circuits. They have also filed for a patent to incorporate the RF cochlea in a universal or software radio architecture that is designed to efficiently process a broad spectrum of signals including cellular phone, wireless Internet, FM, and other signals.

Copying the cochlea
The RF cochlea mimics the structure and function of the biological cochlea, which uses fluid mechanics, piezoelectrics and neural signal processing to convert sound waves into electrical signals that are sent to the brain.

As sound waves enter the cochlea, they create mechanical waves in the cochlear membrane and the fluid of the inner ear, activating hair cells (cells that cause electrical signals to be sent to the brain). The cochlea can perceive a 100-fold range of frequencies -- in humans, from 100 to 10,000 Hz. Sarpeshkar used the same design principles in the RF cochlea to create a device that can perceive signals at million-fold higher frequencies, which includes radio signals for most commercial wireless applications.

The device demonstrates what can happen when researchers take inspiration from fields outside their own, says Sarpeshkar.

Above: Rahul Sarpeshkar discusses research and education in his group and the intellectual challenge facing engineers at the frontiers of bioelectronics

"Somebody who works in radio would never think of this, and somebody who works in hearing would never think of it, but when you put the two together, each one provides insight into the other," he says. For example, in addition to its use for radio applications, the work provides an analysis of why cochlear spectrum analysis is faster than any known spectrum-analysis algorithm. Thus, it sheds light on the mechanism of hearing as well.

The RF cochlea, embedded on a silicon chip measuring 1.5 mm by 3 mm, works as an analog spectrum analyzer, detecting the composition of any electromagnetic waves within its perception range. Electromagnetic waves travel through electronic inductors and capacitors (analogous to the biological cochlea's fluid and membrane). Electronic transistors play the role of the cochlea's hair cells.

The analog RF cochlea chip is faster than any other RF spectrum analyzer and consumes about 100 times less power than what would be required for direct digitization of the entire bandwidth. That makes it desirable as a component of a universal or "cognitive" radio, which could receive a broad range of frequencies and select which ones to attend to.

Biological inspiration
This is not the first time Sarpeshkar has drawn on biology for inspiration in designing electronic devices. Trained as an engineer but also a student of biology, he has found many similar patterns in the natural and man-made worlds (http://www.rle.mit.edu/avbs). For example, Sarpeshkar's group, in MIT's Research Laboratory of Electronics, has also developed an analog speech-synthesis chip inspired by the human vocal tract and a novel analysis-by-synthesis technique based on the vocal tract. The chip's potential for robust speech recognition in noise and its potential for voice identification have several applications in portable devices and security applications.

The researchers have built circuits that can analyze heart rhythms for wireless heart monitoring, and are also working on projects inspired by signal processing in cells. In the past, his group has worked on hybrid analog-digital signal processors inspired by neurons in the brain.

Sarpeshkar says that engineers can learn a great deal from studying biological systems that have evolved over hundreds of millions of years to perform sensory and motor tasks very efficiently in noisy environments while using very little power.

"Humans have a long way to go before their architectures will successfully compete with those in nature, especially in situations where ultra-energy-efficient or ultra-low-power operation are paramount," he said. Nevertheless, "We can mine the intellectual resources of nature to create devices useful to humans, just as we have mined her physical resources in the past.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>