Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE, ORNL Helping Industry Use Less Energy

27.10.2008
Four Oak Ridge National Laboratory technologies to improve energy efficiency in industry have won funding from the Department of Energy’s Industrial Technologies Program.

The projects, ranging from a heat-free heat treatment for industrial steels to less expensive better welds for large oil and gas pipelines, will bring $7.5 million to ORNL and another $3 million to industry partners. ORNL is a partner on a fifth project that will bring $1.5 million to the lab and is worth $4.4 million overall.

Craig Blue, manager of the Industrial Technologies Program for ORNL, noted that the important role the industrial sector plays.

“Industry in the United States accounts for one-fourth of the world’s manufacturing output, employs 14 million people and at 12 percent of the gross domestic product makes the highest contribution to the economy of any sector,” Blue said.

While the U.S. industrial sector supplies over 60 percent of the nation’s exports worth $50 billion/month, the challenge is to reduce the amount of energy – 32 quads, which is about one-third of the total energy consumed in the nation. One quad is equal to 1 quadrillion British thermal units, an amount of energy equal to 170 million barrels of oil.

“Working with industry, we are confident that we can reduce the amount of energy consumed and increase productivity through new technologies,” Blue said.

The following technologies were the winners of DOE Energy Intensive Processes support:

High-magnetic field processing. This is a heat-free heat-treating method that uses magnetic fields to enhance reaction kinetics and shift the phase boundaries targeted by heat treatment. This strategy can eliminate heat treatment steps, saving time and energy and adding a new dimension to materials processing. The project is led by Gail Ludtka of ORNL’s Materials Science and Technology Division. Partners are American Magnetics, Ajax TOCCO, American Safety Razor, Carpenter Technologies and Caterpillar.

Near net shape manufacturing of low-cost titanium powders for industry. This is a technology that consolidates new titanium and titanium alloy powders into net shape components for energy systems such as aerospace components and heat exchangers. The project is led by Bill Peter of the Materials Science and Technology Division. Partners are Ohio State University, LMC, Ametek, Lockheed Martin and Aqua Chem.

Improved heat recovery in biomass-fired boilers. This project is aimed at developing advanced materials and designs to improve efficiency by enabling boilers to be operated at higher temperatures. The maximum operating temperature is often limited by the corrosion rate of superheater tubes. By learning why these tubes degrade when operated above the melting point of the inorganic deposits, which is necessary for the process, researchers hope to identify alloys or coatings that provide improved resistance.

The project is led by Jim Keiser of the Materials Science and Technology Division. Partners include FP Innovations, Sharp Consultants and the University of Tennessee.

Flexible hybrid friction stir joining technology. This project is aimed at transforming friction stir welding, a specialty process that uses up to 80 percent less energy than standard welding, into a mainstream process. Friction stir welding, a solid-state joining process that produces high-quality welds, is now used primarily for aluminum and other low-melting materials. Despite energy and quality advantages, the technology has seen limited use in steel, complex structures and thick sections applications.

Researchers hope to develop new materials for friction stir welding tools, develop hybrid friction stir welding with auxiliary heating to reduce forge load and develop multi-pass multi-layer technology for very thick sections. Ultimately, this will result in a field-deployable system that provides flexibility and affordability for on-site construction. Initial applications will be for large oil and gas pipelines.

Partners are Exxon Mobil Corp., ESAB Group, MegaStir Technologies and Edison Welding Institute.

Eaton Corp. is the lead on the fifth project, prototyping energy-efficient thermo-magnetic and induction hardening for heat treat and net-shape forming applications. The goal is to extend tool lifetime and enable cost-effective energy-efficient implementation of precision forging across a wide range of industries. This can be done by coupling the advanced high magnetic field and induction heating technologies to post-process lower cost material feedstock and to harden the die. Ludtka will be working with Eaton on this project.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov/news

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>