Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissertation work led to world-leading wave power

09.12.2008
A technology that is adapted to the special conditions for wave energy places the wave energy technology from Uppsala on the absolute cutting edge in the world.

In his dissertation, Rafael Waters presents the findings from the experimental facility located in the sea outside Lysekil, Sweden, in which he has played a leading role in designing and constructing. He is publicly defending his dissertation at Uppsala University on December 12.

For nearly three years, a wave power plant has stood on the bottom of the ocean a couple of kilometers off the west coast of Sweden, near Lysekil. Rafael Waters, from the Uppsala University Division of Electricity, designed and built the facility as part of his doctoral project. The station is uniquely durable and maintenance-free thanks to its simple mechanical construction, which was engineered at the Division.

“Instead of trying to adapt conventional energy technology to the special challenges of wave energy, we developed a technology that is adapted to the ocean from the start,” says Rafael Waters.

The generator in the wave power facility in Lysekil is very special. It is a so-called linear generator that generates electricity apace with the slow movements of the waves. An ordinary generator transforms rotation energy to electricity, and it needs to turn at about 1500 rpm to be efficient. It is then necessary somehow to convert the slow wave movement to a rapid rotating movement.

“This means that a wave energy station with an ordinary generator needs energy transmission systems such as gearboxes or hydraulic systems and other complicated details that wear out and require much more maintenance than a linear generator,” says Rafael Waters. “Our generator has functioned without any trouble every time we started it up over the years, even though it has received no maintenance and has sometimes stood still for months.”

Rafael Waters and his colleagues are busy determining parameters such as power output and buoy size in order to attain the best results in the long term.

“With smaller buoys and lower power output, there is less stress on the wave power station. On the other hand, the goal is to produce as much power as possible. This is ultimately an economic consideration, and we want to understand how to optimize the construction.”

Next year the wave power facility in Lysekil will be complemented by two more plants and connected to one of the world’s first wave energy parks, which will be capable of supplying household electricity to about 60 homes. In a few years’ time, the park will include some ten plants.

In the long term, wave energy should be able to supply Sweden with about 10TWh of electricity per year, comparable to 12 nuclear power plants.

“But other countries have much more potential,” says Rafael Waters. “Norway’s waves, for instance, contain ten times as much energy as ours, and Norway’s total potential is more than ten times higher than Sweden’s.”

Anneli Waara | alfa
Further information:
http://www.uu.se
http://publications.uu.se/theses/abstract.xsql?dbid=9404

More articles from Power and Electrical Engineering:

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>