Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissertation work led to world-leading wave power

09.12.2008
A technology that is adapted to the special conditions for wave energy places the wave energy technology from Uppsala on the absolute cutting edge in the world.

In his dissertation, Rafael Waters presents the findings from the experimental facility located in the sea outside Lysekil, Sweden, in which he has played a leading role in designing and constructing. He is publicly defending his dissertation at Uppsala University on December 12.

For nearly three years, a wave power plant has stood on the bottom of the ocean a couple of kilometers off the west coast of Sweden, near Lysekil. Rafael Waters, from the Uppsala University Division of Electricity, designed and built the facility as part of his doctoral project. The station is uniquely durable and maintenance-free thanks to its simple mechanical construction, which was engineered at the Division.

“Instead of trying to adapt conventional energy technology to the special challenges of wave energy, we developed a technology that is adapted to the ocean from the start,” says Rafael Waters.

The generator in the wave power facility in Lysekil is very special. It is a so-called linear generator that generates electricity apace with the slow movements of the waves. An ordinary generator transforms rotation energy to electricity, and it needs to turn at about 1500 rpm to be efficient. It is then necessary somehow to convert the slow wave movement to a rapid rotating movement.

“This means that a wave energy station with an ordinary generator needs energy transmission systems such as gearboxes or hydraulic systems and other complicated details that wear out and require much more maintenance than a linear generator,” says Rafael Waters. “Our generator has functioned without any trouble every time we started it up over the years, even though it has received no maintenance and has sometimes stood still for months.”

Rafael Waters and his colleagues are busy determining parameters such as power output and buoy size in order to attain the best results in the long term.

“With smaller buoys and lower power output, there is less stress on the wave power station. On the other hand, the goal is to produce as much power as possible. This is ultimately an economic consideration, and we want to understand how to optimize the construction.”

Next year the wave power facility in Lysekil will be complemented by two more plants and connected to one of the world’s first wave energy parks, which will be capable of supplying household electricity to about 60 homes. In a few years’ time, the park will include some ten plants.

In the long term, wave energy should be able to supply Sweden with about 10TWh of electricity per year, comparable to 12 nuclear power plants.

“But other countries have much more potential,” says Rafael Waters. “Norway’s waves, for instance, contain ten times as much energy as ours, and Norway’s total potential is more than ten times higher than Sweden’s.”

Anneli Waara | alfa
Further information:
http://www.uu.se
http://publications.uu.se/theses/abstract.xsql?dbid=9404

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>