Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now you can determine the solar efficiency of your roof

17.10.2011
It is becoming more and more common to install solar panels on roofs in order to obtain green electricity, but not all roofs are equally suitable.

Scientists from the University of Gothenburg, Sweden, have launched a tool that uses the actual conditions to determine the maximum possible magnitude of solar incidence - in a whole town, a neighbourhood, or a particular roof. The scientists have surveyed Gothenburg in a pilot project.

"The roofs structures of a town may be more or less suitable for the installation of solar panels, depending on such factors as how much a particular roof is shadowed by surrounding buildings and vegetation, the gradient of the roof, and the angle of incidence of sunlight. It is now possible for the first time to determine how much solar energy a particular roof will receive during the year", says Fredrik Lindberg of the Department of Earth Sciences at Gothenburg University.

The scientists at the University of Gothenburg have worked together with consultants WSP to develop a GIS system that can calculate the potential of actual roofs to produce energy from solar panels. The system is called "SEES" – Solar Energy from Existing Structures – and will be freely available to both companies and municipalities.

... more about:
»GIS »SEES »WSP »solar energy »solar panels

The new tool is based on computer-based geographical information systems (GIS) that collect, store, analyse and present geographical data. This means that the tool describes real roofs in the correct surroundings. The sun in the model illuminates the three-dimensional built environment and simulates how surrounding buildings, terrain and vegetation throw shadows.

The shadow effect can be calculated for each month or for a complete year, and this means that certain parts of a roof may turn out to be unsuitable for collecting solar energy, even though the roof has both optimal direction and gradient. In this way, it is possible to calculate the total solar radiation on each part of a roof structure within a given area, calculated as kilowatt hours per square metre.

Thus, SEES can provide a map over the suitability, based on the user's requirements for good, less good and poor annual solar incidence. Climate data (either measured or calculated values) with a resolution as high as 1 hour is used for the location at which SEES is being used, in order to obtain as accurate an estimate of solar incidence as possible.

"We have used Gothenburg as pilot town in the project, but the method can be used in all municipalities where the necessary data is made available. The users can judge the suitability of a roof for solar voltaic panels or solar thermal panels across a wide range, based on this", says Fredrik Lindberg.

The solar energy project has been carried out by the University of Gothenburg in collaboration with WSP Analys & Strategi, and it has just presented its final report. The project has been financed by the SolEl programme, the Research Foundation of Göteborg Energi, the City Planning Administration of Gothenburg and the Region Västra Götaland County Council.

For more information, please contact: Fredrik Lindberg,
Telephone: +46 31 786 2606
Mobile: +46 73 658 4948
Email: fredrik.lindberg@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

Further reports about: GIS SEES WSP solar energy solar panels

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>