Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now you can determine the solar efficiency of your roof

17.10.2011
It is becoming more and more common to install solar panels on roofs in order to obtain green electricity, but not all roofs are equally suitable.

Scientists from the University of Gothenburg, Sweden, have launched a tool that uses the actual conditions to determine the maximum possible magnitude of solar incidence - in a whole town, a neighbourhood, or a particular roof. The scientists have surveyed Gothenburg in a pilot project.

"The roofs structures of a town may be more or less suitable for the installation of solar panels, depending on such factors as how much a particular roof is shadowed by surrounding buildings and vegetation, the gradient of the roof, and the angle of incidence of sunlight. It is now possible for the first time to determine how much solar energy a particular roof will receive during the year", says Fredrik Lindberg of the Department of Earth Sciences at Gothenburg University.

The scientists at the University of Gothenburg have worked together with consultants WSP to develop a GIS system that can calculate the potential of actual roofs to produce energy from solar panels. The system is called "SEES" – Solar Energy from Existing Structures – and will be freely available to both companies and municipalities.

... more about:
»GIS »SEES »WSP »solar energy »solar panels

The new tool is based on computer-based geographical information systems (GIS) that collect, store, analyse and present geographical data. This means that the tool describes real roofs in the correct surroundings. The sun in the model illuminates the three-dimensional built environment and simulates how surrounding buildings, terrain and vegetation throw shadows.

The shadow effect can be calculated for each month or for a complete year, and this means that certain parts of a roof may turn out to be unsuitable for collecting solar energy, even though the roof has both optimal direction and gradient. In this way, it is possible to calculate the total solar radiation on each part of a roof structure within a given area, calculated as kilowatt hours per square metre.

Thus, SEES can provide a map over the suitability, based on the user's requirements for good, less good and poor annual solar incidence. Climate data (either measured or calculated values) with a resolution as high as 1 hour is used for the location at which SEES is being used, in order to obtain as accurate an estimate of solar incidence as possible.

"We have used Gothenburg as pilot town in the project, but the method can be used in all municipalities where the necessary data is made available. The users can judge the suitability of a roof for solar voltaic panels or solar thermal panels across a wide range, based on this", says Fredrik Lindberg.

The solar energy project has been carried out by the University of Gothenburg in collaboration with WSP Analys & Strategi, and it has just presented its final report. The project has been financed by the SolEl programme, the Research Foundation of Göteborg Energi, the City Planning Administration of Gothenburg and the Region Västra Götaland County Council.

For more information, please contact: Fredrik Lindberg,
Telephone: +46 31 786 2606
Mobile: +46 73 658 4948
Email: fredrik.lindberg@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

Further reports about: GIS SEES WSP solar energy solar panels

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>