Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now you can determine the solar efficiency of your roof

17.10.2011
It is becoming more and more common to install solar panels on roofs in order to obtain green electricity, but not all roofs are equally suitable.

Scientists from the University of Gothenburg, Sweden, have launched a tool that uses the actual conditions to determine the maximum possible magnitude of solar incidence - in a whole town, a neighbourhood, or a particular roof. The scientists have surveyed Gothenburg in a pilot project.

"The roofs structures of a town may be more or less suitable for the installation of solar panels, depending on such factors as how much a particular roof is shadowed by surrounding buildings and vegetation, the gradient of the roof, and the angle of incidence of sunlight. It is now possible for the first time to determine how much solar energy a particular roof will receive during the year", says Fredrik Lindberg of the Department of Earth Sciences at Gothenburg University.

The scientists at the University of Gothenburg have worked together with consultants WSP to develop a GIS system that can calculate the potential of actual roofs to produce energy from solar panels. The system is called "SEES" – Solar Energy from Existing Structures – and will be freely available to both companies and municipalities.

... more about:
»GIS »SEES »WSP »solar energy »solar panels

The new tool is based on computer-based geographical information systems (GIS) that collect, store, analyse and present geographical data. This means that the tool describes real roofs in the correct surroundings. The sun in the model illuminates the three-dimensional built environment and simulates how surrounding buildings, terrain and vegetation throw shadows.

The shadow effect can be calculated for each month or for a complete year, and this means that certain parts of a roof may turn out to be unsuitable for collecting solar energy, even though the roof has both optimal direction and gradient. In this way, it is possible to calculate the total solar radiation on each part of a roof structure within a given area, calculated as kilowatt hours per square metre.

Thus, SEES can provide a map over the suitability, based on the user's requirements for good, less good and poor annual solar incidence. Climate data (either measured or calculated values) with a resolution as high as 1 hour is used for the location at which SEES is being used, in order to obtain as accurate an estimate of solar incidence as possible.

"We have used Gothenburg as pilot town in the project, but the method can be used in all municipalities where the necessary data is made available. The users can judge the suitability of a roof for solar voltaic panels or solar thermal panels across a wide range, based on this", says Fredrik Lindberg.

The solar energy project has been carried out by the University of Gothenburg in collaboration with WSP Analys & Strategi, and it has just presented its final report. The project has been financed by the SolEl programme, the Research Foundation of Göteborg Energi, the City Planning Administration of Gothenburg and the Region Västra Götaland County Council.

For more information, please contact: Fredrik Lindberg,
Telephone: +46 31 786 2606
Mobile: +46 73 658 4948
Email: fredrik.lindberg@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

Further reports about: GIS SEES WSP solar energy solar panels

More articles from Power and Electrical Engineering:

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>