Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder leading study of wind turbine wakes

27.04.2011
While wind turbines primarily are a source of renewable energy, they also produce wakes of invisible ripples that can affect the atmosphere and influence wind turbines downstream -- an issue being researched in a newly launched study led by the University of Colorado Boulder's Julie Lundquist, assistant professor in the atmospheric and oceanic sciences department.

The study, called the Turbine Wake and Inflow Characterization Study, or TWICS, also includes researchers from the National Oceanic and Atmospheric Administration, the U.S. Department of Energy's National Renewable Energy Laboratory, or NREL, and the Lawrence Livermore National Laboratory in Livermore, Calif.

Scientists and wind energy developers will use results of the study to better understand power production and increase the productivity of wind farms, according to the researchers.

"Today's massive wind turbines stretch into a complicated part of the atmosphere," said Lundquist, who also is a joint appointee at NREL. "If we can understand how gusts and rapid changes in wind direction affect turbine operations and how turbine wakes behave, we can improve design standards, increase efficiency and reduce the cost of energy."

To measure wind shifts and wake behavior, the researchers will monitor a wind turbine at NREL's National Wind Technology Center in south Boulder, using an instrument developed at NOAA called a high-resolution scanning Doppler lidar. The lidar produces three-dimensional portraits of atmospheric activity and can capture a wedge of air up to 3,280 feet from the ground and 4.3 miles long.

Robert Banta, an atmospheric scientist with NOAA's Earth System Research Laboratory and a TWICS researcher, has worked with the instrument for several years.

"The wake effect has been modeled in wind tunnel studies and numerical models," said Banta, "but the atmosphere is different, it's more variable and complicated."

Researchers also will use a specialized laser called a Windcube lidar and a sonic detection and ranging system, called a Triton sodar, to measure wind and turbulence. In addition, NREL has installed two meteorological towers, each 135 meters tall, which will be used to measure air temperature, as well as wind and turbulence.

"Even fluctuations in air temperature throughout the day can affect wind turbine wakes," said Lundquist. "The resulting changes in wake behavior can impact the productivity of wind farms with many rows of turbines, so it's important to observe them in detail and understand how to minimize their impacts."

Other TWICS researchers include Yelena Pichugina, Alan Brewer, Dave Brown, Raul Alvarez and Scott Sandberg of NOAA, Neil Kelley and Andrew Clifton of NREL and Jeff Mirocha of Lawrence Livermore National Laboratory.

CU-Boulder graduate students Matt Aitken, Mike Rhodes, Robert Marshall and Brian Vanderwende of Lundquist's research group also will work on the study.

For more information on the TWICS study and Lundquist's research visit atoc.colorado.edu/~jlundqui/re.html.

Contact

Julie Lundquist, 303-492-8932
julie.lundquist@colorado.edu
Elizabeth Lock, CU media relations, 303-492-3117
elizabeth.lock@colorado.edu

Julie Lundquist | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Power and Electrical Engineering:

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

nachricht Plug & Play Light Solution for NOx measurement
01.12.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>