Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists leverage dark silicon to improve smartphone battery life

01.09.2010
A new smartphone chip prototype under development at the University of California, San Diego will improve smartphone efficiency by making use of “dark silicon” – the underused transistors in modern microprocessors. On August 23, UC San Diego computer scientists presented GreenDroid, the new smartphone chip prototype at the HotChips symposium in Palo Alto, CA.
Dark silicon refers to the huge swaths of silicon transistors on today’s chips that are underused because there is not enough power to utilize all the transistors at the same time. The new GreenDroid chip prototype from computer scientists at UC San Diego will deliver improved performance through specialized processors fashioned from dark silicon. These processors are designed to run heavily used chunks of code, called “hot code,” in Google’s Android smartphone platform.

Computer science professors Michael Taylor and Steven Swanson from the Department of Computer Science and Engineering (CSE) at the UC San Diego Jacobs School of Engineering are leading the project.

“This is an exciting time for UCSD. Our students are designing a real multicore processing chip, in an advanced technology, that is simultaneously advancing the state-of-the art in both smartphone and processor design. This marks the first of what I hope is many such chips that will come out of the UCSD research community,” said Taylor.

The GreenDroid presentation at HotChips caught the attention of IEEE Spectrum, EETimes and LightReading, which all ran stories.

While chip makers can now make similar types of specialized processors by hand, the UC San Diego computer scientists developed a fully automated system. It generates blueprints for specialized processors, called conservation cores, from source code extracted from applications.

GreenDroid conservation cores use 11 times less energy per instruction than an aggressive mobile application processor. Accounting for code running outside the conservation core still results in an increase in efficiency of 7.5 times compared to an aggressive mobile application processor, according to the computer scientists’ HotChips presentation.

“Smartphones are a perfect match for our approach, since users spend most of their time running a core set of applications, and they demand long battery life. As mobile applications become more sophisticated, it’s going to be harder and harder to meet that challenge. Conservation cores offer a solution that exploits a resource that will soon be quite plentiful – dark silicon,” said Swanson.

Conservation cores also incorporate focused reconfigurability that allows them to adapt to small changes in the target application while still delivering efficiency gains.

Dark Silicon

This work is motivated by the growing problem of dark silicon, which refers to transistors on microprocessors that are forced to remain off most of the time because of power constraints

“We don’t have enough power to use all the transistors at once – that is the ‘utilization wall,’” said UC San Diego computer science graduate student Nathan Goulding who presented the team’s GreenDroid chip at HotChips. Goulding led GreenDroid development, which is one part of the larger conservation core project.

“The utilization wall will change the way everyone builds processors,” the computer scientists reported in their HotChips talk.

If this utilization wall problem is not solved, more transistors on computer chips will not necessarily lead to improved performance or problem solving capacity in each new chip generation.

Automated Hardware Maker

As a real-world prototype, the computer scientists from the UC San Diego Jacobs School of Engineering used dark silicon to build specialized circuits for specific tasks frequently performed by popular smartphone applications such as Web browsers, email software and music players. The computer scientists asked ‘where does most of the computation happen?’

They took answers to this question, and fed the relevant code into their automated tool chain.

“A chip that does MP3 decoding…people can build specialized logic for this by hand, but it’s an enormous amount of effort and this doesn’t scale well. Our approach is automated,” said Goulding.

The computer scientists input pieces of code shared by multiple software applications for Android phones. The output at the end of the automated chain is a blueprint for specialized hardware. This specialized hardware will only execute some regions of the software code. The rest of the code, known as “cold code”, is executed by the phone’s general processor.

The computer scientists chose a smartphone for their chip prototype because mobile handsets are the new dominant computing platform. “Smartphones are going to be everywhere,” said Goulding, “We said to ourselves, ‘let’s make a prototype chip that saves energy on Android phones.’”

The HotChips slides and the full list of authors are below.

GreenDroid: A Mobile Application Processor for Silicon’s Dark Future, Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Jonathan Babb*,Michael Taylor, andSteven Swanson, Proceedings of HotChips, 2010.

*Jonathan Babb is at CSAIL, Massachusetts Institute of Technology

Related work from the team: Conservation Cores: Reducing the Energy of Mature Computations, Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,Steven Swanson, andMichael Bedford Taylor, ASPLOS '10: Proceeding of the 15th international conference on Architectural support for programming languages and operating systems, 2010.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>