Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists leverage dark silicon to improve smartphone battery life

01.09.2010
A new smartphone chip prototype under development at the University of California, San Diego will improve smartphone efficiency by making use of “dark silicon” – the underused transistors in modern microprocessors. On August 23, UC San Diego computer scientists presented GreenDroid, the new smartphone chip prototype at the HotChips symposium in Palo Alto, CA.
Dark silicon refers to the huge swaths of silicon transistors on today’s chips that are underused because there is not enough power to utilize all the transistors at the same time. The new GreenDroid chip prototype from computer scientists at UC San Diego will deliver improved performance through specialized processors fashioned from dark silicon. These processors are designed to run heavily used chunks of code, called “hot code,” in Google’s Android smartphone platform.

Computer science professors Michael Taylor and Steven Swanson from the Department of Computer Science and Engineering (CSE) at the UC San Diego Jacobs School of Engineering are leading the project.

“This is an exciting time for UCSD. Our students are designing a real multicore processing chip, in an advanced technology, that is simultaneously advancing the state-of-the art in both smartphone and processor design. This marks the first of what I hope is many such chips that will come out of the UCSD research community,” said Taylor.

The GreenDroid presentation at HotChips caught the attention of IEEE Spectrum, EETimes and LightReading, which all ran stories.

While chip makers can now make similar types of specialized processors by hand, the UC San Diego computer scientists developed a fully automated system. It generates blueprints for specialized processors, called conservation cores, from source code extracted from applications.

GreenDroid conservation cores use 11 times less energy per instruction than an aggressive mobile application processor. Accounting for code running outside the conservation core still results in an increase in efficiency of 7.5 times compared to an aggressive mobile application processor, according to the computer scientists’ HotChips presentation.

“Smartphones are a perfect match for our approach, since users spend most of their time running a core set of applications, and they demand long battery life. As mobile applications become more sophisticated, it’s going to be harder and harder to meet that challenge. Conservation cores offer a solution that exploits a resource that will soon be quite plentiful – dark silicon,” said Swanson.

Conservation cores also incorporate focused reconfigurability that allows them to adapt to small changes in the target application while still delivering efficiency gains.

Dark Silicon

This work is motivated by the growing problem of dark silicon, which refers to transistors on microprocessors that are forced to remain off most of the time because of power constraints

“We don’t have enough power to use all the transistors at once – that is the ‘utilization wall,’” said UC San Diego computer science graduate student Nathan Goulding who presented the team’s GreenDroid chip at HotChips. Goulding led GreenDroid development, which is one part of the larger conservation core project.

“The utilization wall will change the way everyone builds processors,” the computer scientists reported in their HotChips talk.

If this utilization wall problem is not solved, more transistors on computer chips will not necessarily lead to improved performance or problem solving capacity in each new chip generation.

Automated Hardware Maker

As a real-world prototype, the computer scientists from the UC San Diego Jacobs School of Engineering used dark silicon to build specialized circuits for specific tasks frequently performed by popular smartphone applications such as Web browsers, email software and music players. The computer scientists asked ‘where does most of the computation happen?’

They took answers to this question, and fed the relevant code into their automated tool chain.

“A chip that does MP3 decoding…people can build specialized logic for this by hand, but it’s an enormous amount of effort and this doesn’t scale well. Our approach is automated,” said Goulding.

The computer scientists input pieces of code shared by multiple software applications for Android phones. The output at the end of the automated chain is a blueprint for specialized hardware. This specialized hardware will only execute some regions of the software code. The rest of the code, known as “cold code”, is executed by the phone’s general processor.

The computer scientists chose a smartphone for their chip prototype because mobile handsets are the new dominant computing platform. “Smartphones are going to be everywhere,” said Goulding, “We said to ourselves, ‘let’s make a prototype chip that saves energy on Android phones.’”

The HotChips slides and the full list of authors are below.

GreenDroid: A Mobile Application Processor for Silicon’s Dark Future, Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Jonathan Babb*,Michael Taylor, andSteven Swanson, Proceedings of HotChips, 2010.

*Jonathan Babb is at CSAIL, Massachusetts Institute of Technology

Related work from the team: Conservation Cores: Reducing the Energy of Mature Computations, Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,Steven Swanson, andMichael Bedford Taylor, ASPLOS '10: Proceeding of the 15th international conference on Architectural support for programming languages and operating systems, 2010.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>