Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clean Energy From Water


Fuel cells generate electrical energy through a chemical reaction of hydrogen and oxygen. To obtain clean energy, the splitting of water into its components of hydrogen and oxygen is critical. Researchers at the University of Basel study how sunlight can be used for this purpose. The scientific journal Chemical Communications published their latest results.

Developing clean and renewable sources of energy is one of the greatest challenges of our civilization. Artificial photosynthesis is one of the most promising approaches. This is when water is photo-electrochemically with the aid of sunlight separated into its components H₂ and O₂ and stored.

When the chemical elements are later combined, electrical energy can be created. A team of researchers led by the University of Basel chemists Catherine Housecroft and Edwin Constable are working together with the Swiss Federal Laboratories for Materials Science and Technology (Empa) to implement this method.

Sustainable fuel cells

The process of splitting water (H₂O) consists of two partial reactions, which are implemented with the help of different catalysts: water oxidation (which produces O₂) and water reduction (which produces H₂). The first is the more challenging of the two reactions, which is why research puts so much effort into the development of efficient and sustainable water oxidation catalysts.

An important factor in creating photo-electrochemical fuel cells is the precise arrangement of the individual components. "If you don't do this, it's like throwing all the different parts of a clock into a bag, giving it a shake and then hoping it will be possible to tell the time," explains Prof. Edwin Constable from the University of Basel.

To determine the perfect arrangement of the catalysts, the Basel-based chemists developed a water oxidation model in their current study which, although powered by electricity, generates the same chemical intermediate states as light.

To accomplish this, they used compounds of the chemical element ruthenium as a catalyst. The critical feature is the self-assembly of the individual components in a hierarchical structure. The researchers thus succeeded in simulating fuel cells powered by light radiation. This model allowed them to test the position and efficiency of the individual components.

Original article
Rita Toth, Roché M. Walliser, Niamh S. Murray, Debajeet K. Bora, Artur Braun, Giuseppino Fortunato, Catherine E. Housecroft and Edwin C. Constable
A self-assembled, multicomponent water oxidation device
Chemistry Communication (2016), doi: 10.1039/c5cc09556e

Further information
Prof. Dr. Edwin C. Constable, University of Basel, Department of Chemistry, Tel. +41 61 267 10 01, email:

Weitere Informationen:

Reto Caluori | Universität Basel

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>