Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Answers to huge wind-farm problems are blowin' in the wind

17.12.2008
While harnessing more energy from the wind could help satisfy growing demands for electricity and reduce emissions of global-warming gases, turbulence from proposed wind farms could adversely affect the growth of crops in the surrounding countryside.

Solutions to this, and other problems presented by wind farms – containing huge wind turbines, each standing taller than a 60-story building and having blades more than 300 feet long – can be found blowin’ in the wind, a University of Illinois researcher says.

“By identifying better siting criteria, determining the optimum spacing between turbines, and designing more efficient rotors, we can minimize the harmful impacts of large wind farms,” said Somnath Baidya Roy, a professor of atmospheric sciences at the U. of I. “Through careful planning and testing, we can avoid some of the worst pitfalls altogether.”

In recent years, wind-power technology has progressed from small, isolated windmills to large wind farms that contain vast arrays of giant turbines plugged into existing power-distribution networks. A wind farm in northwest Iowa, for example, has more than 600 wind turbines, and provides power to more than 140,000 homes.

“If wind is to be a major player in global electrical production, however, we have to think in terms of even larger scales– of say, thousands of turbines per wind farm,” Baidya Roy said. “Such a wind farm could replace ten coal-fired power plants, but with so many turbines, turbulence could generate huge problems.”

By disrupting airflow to nearby turbines, turbulence can significantly reduce the efficiency of a wind farm. But turbulence produced by turbine rotors also can have a strong impact on local ground temperature and moisture content.

“Turbulence creates stronger mixing of heat and moisture, which causes the land surface to become warmer and drier,” Baidya Roy said. “This change in local hydrometeorological conditions can affect the growth of crops within the wind farm.”

One way to reduce the impact of turbulence is to better integrate the wind-energy generation process into the natural kinetic energy cycle.

In this cycle, solar energy heats Earth’s surface and is converted into the kinetic energy of a moving air mass. Some of the wind’s kinetic energy is lost as friction, as it passes over and around obstructions such as trees, houses and mountains. At a wind farm, some of the wind’s kinetic energy is harvested and changed into mechanical energy by turning a turbine, and then into electrical energy that flows into power lines.

The first step in reducing the effects of turbulence on local hydrometeorological conditions is to identify regions around the world where wind energy is high and frictional dissipation also is high, Baidya Roy said. “Building wind farms in regions where there is already a lot of kinetic energy dissipation would help to minimize the intrusion to the natural kinetic energy cycle.”

Although the tops of mountain ranges are regions with high winds and high surface friction, constructing wind farms on summits would be impractical or economically unfeasible. Researchers must therefore search for regions better suited for integration with the kinetic energy cycle.

Using the IRA25 dataset, a comprehensive collection of 25 years of data from surface meteorological stations, radiosondes and satellites, Baidya Roy is mapping the wind’s frictional dissipation around the world. He is able to estimate how much wind is available at selected sites, and how much of the wind’s kinetic energy is dissipated as friction at the surface.

His results show that eastern and central Africa, western Australia, eastern China, southern Argentina and Chile, northern Amazonia, the northeastern United States, and Greenland are ideal locations for siting low-impact wind farms. In these regions, a wind farm with 100 large wind turbines spaced about 1 kilometer apart can produce more than 10 megawatts of electricity.

In related work, Baidya Roy also is studying ways to reduce the effects of rotor-generated turbulence on nearby wind turbines. As wind passes through a turbine, some of the energy creates a disruption much like that created by a moving boat. This disruption can affect the efficiency of a wind farm.

Using models, Baidya Roy is simulating the effects of different turbine spacing and patterns, and different rotor designs, on turbulence. The simulations show that reducing rotor-generated turbulence not only reduces the hydrometeorological impacts, but also increases power production by harnessing energy that was otherwise lost to turbulence.

“These studies suggest that while large wind farms can affect local hydrometeorology, there are smart engineering solutions that can significantly reduce those impacts.”

Baidya Roy will describe his work and present early findings at the American Geophysical Union meeting in San Francisco, Dec. 15-19.

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>