Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Answers to huge wind-farm problems are blowin' in the wind

17.12.2008
While harnessing more energy from the wind could help satisfy growing demands for electricity and reduce emissions of global-warming gases, turbulence from proposed wind farms could adversely affect the growth of crops in the surrounding countryside.

Solutions to this, and other problems presented by wind farms – containing huge wind turbines, each standing taller than a 60-story building and having blades more than 300 feet long – can be found blowin’ in the wind, a University of Illinois researcher says.

“By identifying better siting criteria, determining the optimum spacing between turbines, and designing more efficient rotors, we can minimize the harmful impacts of large wind farms,” said Somnath Baidya Roy, a professor of atmospheric sciences at the U. of I. “Through careful planning and testing, we can avoid some of the worst pitfalls altogether.”

In recent years, wind-power technology has progressed from small, isolated windmills to large wind farms that contain vast arrays of giant turbines plugged into existing power-distribution networks. A wind farm in northwest Iowa, for example, has more than 600 wind turbines, and provides power to more than 140,000 homes.

“If wind is to be a major player in global electrical production, however, we have to think in terms of even larger scales– of say, thousands of turbines per wind farm,” Baidya Roy said. “Such a wind farm could replace ten coal-fired power plants, but with so many turbines, turbulence could generate huge problems.”

By disrupting airflow to nearby turbines, turbulence can significantly reduce the efficiency of a wind farm. But turbulence produced by turbine rotors also can have a strong impact on local ground temperature and moisture content.

“Turbulence creates stronger mixing of heat and moisture, which causes the land surface to become warmer and drier,” Baidya Roy said. “This change in local hydrometeorological conditions can affect the growth of crops within the wind farm.”

One way to reduce the impact of turbulence is to better integrate the wind-energy generation process into the natural kinetic energy cycle.

In this cycle, solar energy heats Earth’s surface and is converted into the kinetic energy of a moving air mass. Some of the wind’s kinetic energy is lost as friction, as it passes over and around obstructions such as trees, houses and mountains. At a wind farm, some of the wind’s kinetic energy is harvested and changed into mechanical energy by turning a turbine, and then into electrical energy that flows into power lines.

The first step in reducing the effects of turbulence on local hydrometeorological conditions is to identify regions around the world where wind energy is high and frictional dissipation also is high, Baidya Roy said. “Building wind farms in regions where there is already a lot of kinetic energy dissipation would help to minimize the intrusion to the natural kinetic energy cycle.”

Although the tops of mountain ranges are regions with high winds and high surface friction, constructing wind farms on summits would be impractical or economically unfeasible. Researchers must therefore search for regions better suited for integration with the kinetic energy cycle.

Using the IRA25 dataset, a comprehensive collection of 25 years of data from surface meteorological stations, radiosondes and satellites, Baidya Roy is mapping the wind’s frictional dissipation around the world. He is able to estimate how much wind is available at selected sites, and how much of the wind’s kinetic energy is dissipated as friction at the surface.

His results show that eastern and central Africa, western Australia, eastern China, southern Argentina and Chile, northern Amazonia, the northeastern United States, and Greenland are ideal locations for siting low-impact wind farms. In these regions, a wind farm with 100 large wind turbines spaced about 1 kilometer apart can produce more than 10 megawatts of electricity.

In related work, Baidya Roy also is studying ways to reduce the effects of rotor-generated turbulence on nearby wind turbines. As wind passes through a turbine, some of the energy creates a disruption much like that created by a moving boat. This disruption can affect the efficiency of a wind farm.

Using models, Baidya Roy is simulating the effects of different turbine spacing and patterns, and different rotor designs, on turbulence. The simulations show that reducing rotor-generated turbulence not only reduces the hydrometeorological impacts, but also increases power production by harnessing energy that was otherwise lost to turbulence.

“These studies suggest that while large wind farms can affect local hydrometeorology, there are smart engineering solutions that can significantly reduce those impacts.”

Baidya Roy will describe his work and present early findings at the American Geophysical Union meeting in San Francisco, Dec. 15-19.

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>