Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Answers to huge wind-farm problems are blowin' in the wind

17.12.2008
While harnessing more energy from the wind could help satisfy growing demands for electricity and reduce emissions of global-warming gases, turbulence from proposed wind farms could adversely affect the growth of crops in the surrounding countryside.

Solutions to this, and other problems presented by wind farms – containing huge wind turbines, each standing taller than a 60-story building and having blades more than 300 feet long – can be found blowin’ in the wind, a University of Illinois researcher says.

“By identifying better siting criteria, determining the optimum spacing between turbines, and designing more efficient rotors, we can minimize the harmful impacts of large wind farms,” said Somnath Baidya Roy, a professor of atmospheric sciences at the U. of I. “Through careful planning and testing, we can avoid some of the worst pitfalls altogether.”

In recent years, wind-power technology has progressed from small, isolated windmills to large wind farms that contain vast arrays of giant turbines plugged into existing power-distribution networks. A wind farm in northwest Iowa, for example, has more than 600 wind turbines, and provides power to more than 140,000 homes.

“If wind is to be a major player in global electrical production, however, we have to think in terms of even larger scales– of say, thousands of turbines per wind farm,” Baidya Roy said. “Such a wind farm could replace ten coal-fired power plants, but with so many turbines, turbulence could generate huge problems.”

By disrupting airflow to nearby turbines, turbulence can significantly reduce the efficiency of a wind farm. But turbulence produced by turbine rotors also can have a strong impact on local ground temperature and moisture content.

“Turbulence creates stronger mixing of heat and moisture, which causes the land surface to become warmer and drier,” Baidya Roy said. “This change in local hydrometeorological conditions can affect the growth of crops within the wind farm.”

One way to reduce the impact of turbulence is to better integrate the wind-energy generation process into the natural kinetic energy cycle.

In this cycle, solar energy heats Earth’s surface and is converted into the kinetic energy of a moving air mass. Some of the wind’s kinetic energy is lost as friction, as it passes over and around obstructions such as trees, houses and mountains. At a wind farm, some of the wind’s kinetic energy is harvested and changed into mechanical energy by turning a turbine, and then into electrical energy that flows into power lines.

The first step in reducing the effects of turbulence on local hydrometeorological conditions is to identify regions around the world where wind energy is high and frictional dissipation also is high, Baidya Roy said. “Building wind farms in regions where there is already a lot of kinetic energy dissipation would help to minimize the intrusion to the natural kinetic energy cycle.”

Although the tops of mountain ranges are regions with high winds and high surface friction, constructing wind farms on summits would be impractical or economically unfeasible. Researchers must therefore search for regions better suited for integration with the kinetic energy cycle.

Using the IRA25 dataset, a comprehensive collection of 25 years of data from surface meteorological stations, radiosondes and satellites, Baidya Roy is mapping the wind’s frictional dissipation around the world. He is able to estimate how much wind is available at selected sites, and how much of the wind’s kinetic energy is dissipated as friction at the surface.

His results show that eastern and central Africa, western Australia, eastern China, southern Argentina and Chile, northern Amazonia, the northeastern United States, and Greenland are ideal locations for siting low-impact wind farms. In these regions, a wind farm with 100 large wind turbines spaced about 1 kilometer apart can produce more than 10 megawatts of electricity.

In related work, Baidya Roy also is studying ways to reduce the effects of rotor-generated turbulence on nearby wind turbines. As wind passes through a turbine, some of the energy creates a disruption much like that created by a moving boat. This disruption can affect the efficiency of a wind farm.

Using models, Baidya Roy is simulating the effects of different turbine spacing and patterns, and different rotor designs, on turbulence. The simulations show that reducing rotor-generated turbulence not only reduces the hydrometeorological impacts, but also increases power production by harnessing energy that was otherwise lost to turbulence.

“These studies suggest that while large wind farms can affect local hydrometeorology, there are smart engineering solutions that can significantly reduce those impacts.”

Baidya Roy will describe his work and present early findings at the American Geophysical Union meeting in San Francisco, Dec. 15-19.

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>