Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Answers to huge wind-farm problems are blowin' in the wind

17.12.2008
While harnessing more energy from the wind could help satisfy growing demands for electricity and reduce emissions of global-warming gases, turbulence from proposed wind farms could adversely affect the growth of crops in the surrounding countryside.

Solutions to this, and other problems presented by wind farms – containing huge wind turbines, each standing taller than a 60-story building and having blades more than 300 feet long – can be found blowin’ in the wind, a University of Illinois researcher says.

“By identifying better siting criteria, determining the optimum spacing between turbines, and designing more efficient rotors, we can minimize the harmful impacts of large wind farms,” said Somnath Baidya Roy, a professor of atmospheric sciences at the U. of I. “Through careful planning and testing, we can avoid some of the worst pitfalls altogether.”

In recent years, wind-power technology has progressed from small, isolated windmills to large wind farms that contain vast arrays of giant turbines plugged into existing power-distribution networks. A wind farm in northwest Iowa, for example, has more than 600 wind turbines, and provides power to more than 140,000 homes.

“If wind is to be a major player in global electrical production, however, we have to think in terms of even larger scales– of say, thousands of turbines per wind farm,” Baidya Roy said. “Such a wind farm could replace ten coal-fired power plants, but with so many turbines, turbulence could generate huge problems.”

By disrupting airflow to nearby turbines, turbulence can significantly reduce the efficiency of a wind farm. But turbulence produced by turbine rotors also can have a strong impact on local ground temperature and moisture content.

“Turbulence creates stronger mixing of heat and moisture, which causes the land surface to become warmer and drier,” Baidya Roy said. “This change in local hydrometeorological conditions can affect the growth of crops within the wind farm.”

One way to reduce the impact of turbulence is to better integrate the wind-energy generation process into the natural kinetic energy cycle.

In this cycle, solar energy heats Earth’s surface and is converted into the kinetic energy of a moving air mass. Some of the wind’s kinetic energy is lost as friction, as it passes over and around obstructions such as trees, houses and mountains. At a wind farm, some of the wind’s kinetic energy is harvested and changed into mechanical energy by turning a turbine, and then into electrical energy that flows into power lines.

The first step in reducing the effects of turbulence on local hydrometeorological conditions is to identify regions around the world where wind energy is high and frictional dissipation also is high, Baidya Roy said. “Building wind farms in regions where there is already a lot of kinetic energy dissipation would help to minimize the intrusion to the natural kinetic energy cycle.”

Although the tops of mountain ranges are regions with high winds and high surface friction, constructing wind farms on summits would be impractical or economically unfeasible. Researchers must therefore search for regions better suited for integration with the kinetic energy cycle.

Using the IRA25 dataset, a comprehensive collection of 25 years of data from surface meteorological stations, radiosondes and satellites, Baidya Roy is mapping the wind’s frictional dissipation around the world. He is able to estimate how much wind is available at selected sites, and how much of the wind’s kinetic energy is dissipated as friction at the surface.

His results show that eastern and central Africa, western Australia, eastern China, southern Argentina and Chile, northern Amazonia, the northeastern United States, and Greenland are ideal locations for siting low-impact wind farms. In these regions, a wind farm with 100 large wind turbines spaced about 1 kilometer apart can produce more than 10 megawatts of electricity.

In related work, Baidya Roy also is studying ways to reduce the effects of rotor-generated turbulence on nearby wind turbines. As wind passes through a turbine, some of the energy creates a disruption much like that created by a moving boat. This disruption can affect the efficiency of a wind farm.

Using models, Baidya Roy is simulating the effects of different turbine spacing and patterns, and different rotor designs, on turbulence. The simulations show that reducing rotor-generated turbulence not only reduces the hydrometeorological impacts, but also increases power production by harnessing energy that was otherwise lost to turbulence.

“These studies suggest that while large wind farms can affect local hydrometeorology, there are smart engineering solutions that can significantly reduce those impacts.”

Baidya Roy will describe his work and present early findings at the American Geophysical Union meeting in San Francisco, Dec. 15-19.

James E. Kloeppel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>