Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algal protein gives boost to electrochemical water splitting

20.12.2011
Towards artificial photosynthesis for solar hydrogen generation
Water splitting in photo-electrochemical cells to yield hydrogen is a promising way to sustainable fuels. A team of Swiss and US scientists now made major progress in developing highly efficient electrodes – made of an algal protein, thus mimicking a central step in natural photosynthesis.

Photosynthesis is considered the «Holy Grail» in the field of sustainable energy generation because it directly converts solar energy into storable fuel using nothing but water and carbon dioxide (CO2). Scientists have long tried to mimic the underlying natural processes and to optimize them for energy device applications such as photo-electrochemical cells (PEC), which use sunlight to electrochemically split water – and thus directly generate hydrogen, cutting short the more conventional approach using photovoltaic cells for the electrolysis of water.

Traditionally, PEC electrodes are made of semiconducting materials such as metal oxides, some of which are also known for their photocatalytic properties. For quite some time, researchers at Empa’s Laboratory for High Performance Ceramics (LHPC) have been investigating nanoparticles of these materials, for instance titanium dioxide (TiO2), for the neutralization of organic pollutants in air and water. Collaborating with colleagues at the University of Basel and at Argonne National Laboratory in the US, they now succeeded in making a nano-bio PEC electrode, consisting of iron oxide conjugated with a protein from blue-green algae (also known as cyanobacteria), which is twice as efficient in water splitting as iron oxide alone.

Inspired by photosynthesis
Iron oxide, in particular hematite (alpha-Fe2O3), is a promising electrode material for PEC because it is susceptible to visible wavelengths and thus uses sunlight more efficiently than photocatalysts like TiO2, which can only use the UV part of solar radiation. What’s more, hematite is a low-cost and abundant material.

The second ingredient in the novel electrode «recipe» is phycocyanin, a protein from blue-green algae. «I was inspired by the natural photosynthetic machinery of cyanobacteria where phycocyanin acts as a major light-harvesting component. I wanted to make artificial photosynthesis using ceramics and proteins», recalls Debajeet K. Bora who designed the new electrode during his PhD thesis at Empa. «The concept of hematite surface functionalization with proteins was completely novel in PEC research.»

After Bora covalently cross-coupled phycocyanin to hematite nanoparticles that had been immobilized as a thin film, the conjugated hematite absorbed many more photons than without the algal protein. In fact, the induced photocurrent of the hybrid electrode was doubled compared to a «normal» iron oxide electrode.

One tough cookie
Somewhat surprisingly, the light harvesting protein complex does not get destroyed while in contact with a photocatalyst in an alkaline environment under strong illumination. Chemists would have predicted the complete denaturation of biomolecules under such corrosive and aggressive conditions. «Photocatalysts are designed to destroy organic pollutants, which are a burden to the environment. But here we have a different situation», says Artur Braun, group leader at Empa’s LHPC and principal investigator of the study. «There seems to be a delicate balance where organic molecules not only survive harsh photocatalytic conditions, but even convey an additional benefit to ceramic photocatalysts: They double the photocurrent. This is a big step forward».

The project was fully funded by the Swiss Federal Office of Energy (SFOE). Bora who will soon have completed his PhD thesis says he will continue what he started at Empa during a postdoc at the University of California, Berkeley, which he will assume early next year.

Dr. Artur Braun | EurekAlert!
Further information:
http://www.empa.ch

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>