Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid Mine Drainage Technology Could Aid Marcellus Shale Drilling

22.11.2011
A technology being developed by a Temple University researcher as a solution to Pennsylvania's historic problem with acid mine drainage could also have applications for the state's newest environmental challenge: hydraulic fracturing of Marcellus Shale.

Rock left behind in abandoned mines after coal is extracted contains sulfur impurities that decompose and form sulfuric acid when exposed to air, water and microbes. When water fills a mine’s underground tunnels, sulfuric acid can leach off the walls and get into nearby groundwater, according to Temple University Chemistry Professor Daniel Strongin.

While chemicals such as lime are often used to neutralize acidic runoff, they do not eliminate the root cause, said Strongin. So his lab is developing a technology that uses a specific class of lipid molecules that bind to the metal sulfide, forming a hydrophobic layer that keeps water, oxygen and bacteria from causing it to decompose.

Strongin, who has been working on developing this lipid-based technology for the past eight years, said that approximately 2,400 miles of waterways in Pennsylvania are affected by the contaminated water from the abandoned mines, which is typically acidic and contains large amounts of heavy metals that are deadly to aquatic species.

“Pennsylvania spends roughly $19 million a year to address this issue, largely due to the vast number of abandoned mining areas,” he said. “I’ve read that it’s estimated that it would cost $50 billion to fix the entire problem.”

Strongin now believes that mitigating acid drainage using lipid technology could enable the mine waters to be used in the process of extracting natural gas from the Marcellus Shale formation. During hydraulic fracking, highly pressurized water is pumped into the earth to break or fracture the shale and extract the gas.

“The process requires a tremendous amount of water; essentially, in a given well you need 2-5 million gallons to fracture the rock and release the natural gas,” he said. “As you might expect, people don't want to waste fresh water on that process.”

Strongin said a panel commissioned by the governor of Pennsylvania has recently recommended using water from abandoned mining areas for hydro-fracking the Marcellus Shale.

“It is my belief that our lipid technology could be used to stop acid mine drainage, or the root cause of acid mine drainage, in such a way that the waters emanating from these abandoned mining areas would be more usable in the hydro-fracking process,” he said.

Strongin said there is a cost incentive to remediate abandoned mining areas — which are often in close proximity to the drilling areas — and the contaminated water emanating from those mines for use in the natural gas drilling.

“It cuts down on the costs to transport water to the wells, and you’re not using fresh water resources for the drilling.”

In addition to cleaning the acid mine drainage for use in drilling, Strongin also believes the lipid technology may be useful for cleaning the flow-back water that is a result of the hydro-fracking.

“A lot of the same chemistry that these lipids carry out on the acid mine drainage may be applicable to these contaminated flow-back waters, which carry a lot of dissolved solids and particulate matter,” he said.

Initially funded by the U.S. Department of Energy, Strongin’s research is currently being supported by the Nanotechnology Institute.

Preston M. Moretz | Newswise Science News
Further information:
http://www.temple.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>