Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid Mine Drainage Technology Could Aid Marcellus Shale Drilling

22.11.2011
A technology being developed by a Temple University researcher as a solution to Pennsylvania's historic problem with acid mine drainage could also have applications for the state's newest environmental challenge: hydraulic fracturing of Marcellus Shale.

Rock left behind in abandoned mines after coal is extracted contains sulfur impurities that decompose and form sulfuric acid when exposed to air, water and microbes. When water fills a mine’s underground tunnels, sulfuric acid can leach off the walls and get into nearby groundwater, according to Temple University Chemistry Professor Daniel Strongin.

While chemicals such as lime are often used to neutralize acidic runoff, they do not eliminate the root cause, said Strongin. So his lab is developing a technology that uses a specific class of lipid molecules that bind to the metal sulfide, forming a hydrophobic layer that keeps water, oxygen and bacteria from causing it to decompose.

Strongin, who has been working on developing this lipid-based technology for the past eight years, said that approximately 2,400 miles of waterways in Pennsylvania are affected by the contaminated water from the abandoned mines, which is typically acidic and contains large amounts of heavy metals that are deadly to aquatic species.

“Pennsylvania spends roughly $19 million a year to address this issue, largely due to the vast number of abandoned mining areas,” he said. “I’ve read that it’s estimated that it would cost $50 billion to fix the entire problem.”

Strongin now believes that mitigating acid drainage using lipid technology could enable the mine waters to be used in the process of extracting natural gas from the Marcellus Shale formation. During hydraulic fracking, highly pressurized water is pumped into the earth to break or fracture the shale and extract the gas.

“The process requires a tremendous amount of water; essentially, in a given well you need 2-5 million gallons to fracture the rock and release the natural gas,” he said. “As you might expect, people don't want to waste fresh water on that process.”

Strongin said a panel commissioned by the governor of Pennsylvania has recently recommended using water from abandoned mining areas for hydro-fracking the Marcellus Shale.

“It is my belief that our lipid technology could be used to stop acid mine drainage, or the root cause of acid mine drainage, in such a way that the waters emanating from these abandoned mining areas would be more usable in the hydro-fracking process,” he said.

Strongin said there is a cost incentive to remediate abandoned mining areas — which are often in close proximity to the drilling areas — and the contaminated water emanating from those mines for use in the natural gas drilling.

“It cuts down on the costs to transport water to the wells, and you’re not using fresh water resources for the drilling.”

In addition to cleaning the acid mine drainage for use in drilling, Strongin also believes the lipid technology may be useful for cleaning the flow-back water that is a result of the hydro-fracking.

“A lot of the same chemistry that these lipids carry out on the acid mine drainage may be applicable to these contaminated flow-back waters, which carry a lot of dissolved solids and particulate matter,” he said.

Initially funded by the U.S. Department of Energy, Strongin’s research is currently being supported by the Nanotechnology Institute.

Preston M. Moretz | Newswise Science News
Further information:
http://www.temple.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>