Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Witnesses wanted....and found

19.04.2013
Geochemists from Warnemünde use mineral formation to decipher the conditions during the deposition of marine sediments

Deposits in lakes and seas contain a wealth of information related to the environ-mental conditions prevalent during their genesis. Thus, they are an unfailing archive, particularly with regard to paleo-environmental conditions, for environmental and climate scientists. Now, the fine art is to interpret the derived data correctly.

For this purpose, geoscientists often use "witnesses" or proxies. Widely known witnesses from sediments are fossils, the remains of plants and animals. By comparisons with their well-studied living relatives, ideas about the conditions that predominated at the time of sediment deposition can be deduced. Minerals potentially offer further valuable insights but only if the environmental circumstances present at the time of their formation have been deciphered.

A team of researchers from Germany, Austria and Spain, under the co-ordination of geochemists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now succeeded in reproducing the formation of a BaMn-double carbonate originally found in sediments from the oxygen-deficient region of the Landsort Deep in the laboratory, and thus to elucidate the environmental conditions that gave birth to it. This carbonate, which has yet to be named, serves as a mineral witness for future research to hone in on very specific biogeochemical processes and environmental conditions.

„Sediments in which barium-manganese carbonate are found contain dissolved methane“says Michael E. Böttcher, the leading scientist. "We were able to demonstrate that the prerequisite for the genesis of this carbonate was the microbial decomposition of sulfate and the destruction of barium and manganese minerals stemming from the water column. Methane seems to be involved in these processes.” The consortium around Michael Böttcher used a broad range of methods resulting in a detailed characterization of the carbonate enable its unmistakable detection in other locations.

Thus, wherever this new mineral witness is found, additional important information on the environmental conditions at the time of the carbonate's deposition will be revealed, thanks to the fundamental work of the Warnemünde-based geochemists and their co-workers. The word is out - the search can begin.

These results were published in:
Böttcher, M. E., H. S. Effenberger, P.-L. Gehlken, G. H. Grathoff, B. C. Schmidt, P. Geprägs, R. Bahlo, O. Dellwig, T. Leipe, V. Winde, A. Deutschmann, A. Stark, D. Gallego-Torres and F. Martinez-Ruiz (2012). BaMn[CO3]2 – a previously unrecognized double carbonate in low-temperature environments: structural, spectroscopic, and textural tools for future identification. CdE - Geochemistry 72: 85-89, doi:10.1016/j.chemer.2012.01.001

Contact:
Prof. Dr. Michael E. Böttcher, Department Marine Geology,
phone: +49 381 5197 402, email: michael.boettcher@io-warnemuende.de

Dr. Barbara Hentzsch, science management and public relation,
phone: +49 381 5197 102, email: barbara.hentzsch@io-warnemuende.de

Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock

The IOW is a member of the Leibniz Association, which currently includes 86 research insti-tutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-gemeinschaft.de
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>