Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Witnesses wanted....and found

19.04.2013
Geochemists from Warnemünde use mineral formation to decipher the conditions during the deposition of marine sediments

Deposits in lakes and seas contain a wealth of information related to the environ-mental conditions prevalent during their genesis. Thus, they are an unfailing archive, particularly with regard to paleo-environmental conditions, for environmental and climate scientists. Now, the fine art is to interpret the derived data correctly.

For this purpose, geoscientists often use "witnesses" or proxies. Widely known witnesses from sediments are fossils, the remains of plants and animals. By comparisons with their well-studied living relatives, ideas about the conditions that predominated at the time of sediment deposition can be deduced. Minerals potentially offer further valuable insights but only if the environmental circumstances present at the time of their formation have been deciphered.

A team of researchers from Germany, Austria and Spain, under the co-ordination of geochemists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now succeeded in reproducing the formation of a BaMn-double carbonate originally found in sediments from the oxygen-deficient region of the Landsort Deep in the laboratory, and thus to elucidate the environmental conditions that gave birth to it. This carbonate, which has yet to be named, serves as a mineral witness for future research to hone in on very specific biogeochemical processes and environmental conditions.

„Sediments in which barium-manganese carbonate are found contain dissolved methane“says Michael E. Böttcher, the leading scientist. "We were able to demonstrate that the prerequisite for the genesis of this carbonate was the microbial decomposition of sulfate and the destruction of barium and manganese minerals stemming from the water column. Methane seems to be involved in these processes.” The consortium around Michael Böttcher used a broad range of methods resulting in a detailed characterization of the carbonate enable its unmistakable detection in other locations.

Thus, wherever this new mineral witness is found, additional important information on the environmental conditions at the time of the carbonate's deposition will be revealed, thanks to the fundamental work of the Warnemünde-based geochemists and their co-workers. The word is out - the search can begin.

These results were published in:
Böttcher, M. E., H. S. Effenberger, P.-L. Gehlken, G. H. Grathoff, B. C. Schmidt, P. Geprägs, R. Bahlo, O. Dellwig, T. Leipe, V. Winde, A. Deutschmann, A. Stark, D. Gallego-Torres and F. Martinez-Ruiz (2012). BaMn[CO3]2 – a previously unrecognized double carbonate in low-temperature environments: structural, spectroscopic, and textural tools for future identification. CdE - Geochemistry 72: 85-89, doi:10.1016/j.chemer.2012.01.001

Contact:
Prof. Dr. Michael E. Böttcher, Department Marine Geology,
phone: +49 381 5197 402, email: michael.boettcher@io-warnemuende.de

Dr. Barbara Hentzsch, science management and public relation,
phone: +49 381 5197 102, email: barbara.hentzsch@io-warnemuende.de

Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock

The IOW is a member of the Leibniz Association, which currently includes 86 research insti-tutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-gemeinschaft.de
http://www.io-warnemuende.de

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>