Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Witnesses wanted....and found

Geochemists from Warnemünde use mineral formation to decipher the conditions during the deposition of marine sediments

Deposits in lakes and seas contain a wealth of information related to the environ-mental conditions prevalent during their genesis. Thus, they are an unfailing archive, particularly with regard to paleo-environmental conditions, for environmental and climate scientists. Now, the fine art is to interpret the derived data correctly.

For this purpose, geoscientists often use "witnesses" or proxies. Widely known witnesses from sediments are fossils, the remains of plants and animals. By comparisons with their well-studied living relatives, ideas about the conditions that predominated at the time of sediment deposition can be deduced. Minerals potentially offer further valuable insights but only if the environmental circumstances present at the time of their formation have been deciphered.

A team of researchers from Germany, Austria and Spain, under the co-ordination of geochemists from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now succeeded in reproducing the formation of a BaMn-double carbonate originally found in sediments from the oxygen-deficient region of the Landsort Deep in the laboratory, and thus to elucidate the environmental conditions that gave birth to it. This carbonate, which has yet to be named, serves as a mineral witness for future research to hone in on very specific biogeochemical processes and environmental conditions.

„Sediments in which barium-manganese carbonate are found contain dissolved methane“says Michael E. Böttcher, the leading scientist. "We were able to demonstrate that the prerequisite for the genesis of this carbonate was the microbial decomposition of sulfate and the destruction of barium and manganese minerals stemming from the water column. Methane seems to be involved in these processes.” The consortium around Michael Böttcher used a broad range of methods resulting in a detailed characterization of the carbonate enable its unmistakable detection in other locations.

Thus, wherever this new mineral witness is found, additional important information on the environmental conditions at the time of the carbonate's deposition will be revealed, thanks to the fundamental work of the Warnemünde-based geochemists and their co-workers. The word is out - the search can begin.

These results were published in:
Böttcher, M. E., H. S. Effenberger, P.-L. Gehlken, G. H. Grathoff, B. C. Schmidt, P. Geprägs, R. Bahlo, O. Dellwig, T. Leipe, V. Winde, A. Deutschmann, A. Stark, D. Gallego-Torres and F. Martinez-Ruiz (2012). BaMn[CO3]2 – a previously unrecognized double carbonate in low-temperature environments: structural, spectroscopic, and textural tools for future identification. CdE - Geochemistry 72: 85-89, doi:10.1016/j.chemer.2012.01.001

Prof. Dr. Michael E. Böttcher, Department Marine Geology,
phone: +49 381 5197 402, email:

Dr. Barbara Hentzsch, science management and public relation,
phone: +49 381 5197 102, email:

Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock

The IOW is a member of the Leibniz Association, which currently includes 86 research insti-tutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>