Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Can Keep Mountains From Growing

29.03.2011
Wind is a much more powerful force in the evolution of mountains than previously thought, according to a new report from a University of Arizona-led research team.

Bedrock in Central Asia that would have formed mountains instead was sand-blasted into dust, said lead author Paul Kapp.

"No one had ever thought that wind could be this effective," said Kapp, an associate professor in the UA's department of geosciences. "You won't read in a textbook that wind is a major process in terms of breaking down rock material."

Rivers and glaciers are the textbook examples of forces that wear down mountains and influence their evolution.

Wind can be just as powerful, Kapp said. He and his colleagues estimate wind can be 10 to 100 times more effective in eroding mountains than previously believed.

The team's paper, "Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau," is in the April/May issue of GSA Today.

Kapp's co-authors are Jon D. Pelletier and Joellen Russell of the UA; Alexander Rohrmann, formerly of the UA and now at the University of Potsdam in Germany; Richard Heermance of California State University, Northridge; and Lin Ding of the Chinese Academy of Sciences, Beijing.

The American Chemical Society Petroleum Research Fund and a UA Faculty Small Grant funded the research.

The geoscientists figured out wind's rock-sculpting abilities by studying gigantic wind-formed ridges of rock called yardangs.

Kapp first learned about yardangs when reviewing a scientific paper about Central Asia's Qaidam Basin. To see the geology for himself, he booted up Google Earth–and was wowed by what he saw.

"I'd never seen anything like that before," he said. "I didn't even know what a yardang was."

Huge fields of yardangs that can be seen from space look like corduroy. Wind had scoured long gouges out of the bedrock, leaving the keel-shaped ridges behind. Kapp wondered where the missing material was.

The team's initial research was conducted using geological maps of the region and satellite images from Google Earth. Then Kapp and his team went to the Qaidam Basin to collect more information about the yardangs, the history of wind erosion and the dust.

"What we're proposing is that during the glacials, when it's colder and drier, there's severe wind erosion in the Qaidam basin and the dust gets blown out and deposited downwind in the Loess Plateau," Kapp said.

The term "loess" refers to deposits of wind-blown silt. Parts of the U.S. Midwest have large deposits of loess.

"Up until 3 million years ago, the basin was filling up with sediment," he said. "Then like a switch, the wind turned on and basin sediments get sandblasted away."

Known as the "bread basket of China," the Loess Plateau is the largest accumulation of dust on Earth. Scientists thought most of the dust came from the Gobi Desert.

In contrast, Kapp and his colleagues suggest more than half of the dust came from the Qaidam Basin. Co-author Pelletier, a UA geomorphologist, created a computer model indicating that dust from the basin could have formed the plateau.

The wind is not having such effects now because the climate is different, Kapp said. Co-author Russell plus other research groups suggest the westerly winds shift north during interglacial periods like that of the current climate and shift toward the equator during glacial periods.

Therefore since the last Ice Age ended about 11,000 years ago, the winds have blown from the Gobi Desert toward the Loess Plateau. During glacial periods, the winds blew from the Qaidam basin toward the Loess Plateau instead.

"During the interglacials, the basin fills up with lakes. ... When it goes back to a glacial period, lake sediments blow away," he said. "Our hypothesis is that you have lake development, then wind erosion, lake development, wind erosion, lake development–and so on."

The team suggests wind erosion also influenced how fast the basin's bedrock is folded. In Central Asia, bedrock folds and crumples because it's being squeezed as the Indian plate collides with the Asian plate.

"The folding accelerated 3 million years ago," Kapp said. "That's when the wind erosion turned on. I don't think it's a coincidence."

During the glacial periods, the winds whisked sediment out of the basin. As a result, the bedrock deformed faster because it was no longer weighed down by all the sediment.

Kapp calls the process "wind-enhanced tectonics." The term "tectonics" refers to forces that cause movements and deformation of the Earth's plates.

The whole process is driven by global climate change, he said. "The unifying theme is wind."

Kapp and his team are quantifying the processes further as they analyze more samples they brought back from the Qaidam basin and Loess Plateau.

Researcher contact:
Paul Kapp
520-626-8763
pkapp@email.arizona.edu
Related Web sites:
Paul Kapp
http://www.geo.arizona.edu/~pkapp/
GSA Today
http://www.geosociety.org/gsatoday/
Media contact:
Mari N. Jensen, 520-626-9635
mnjensen@email.arizona.edu

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>