Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild Winds: Changes in Weather Patterns Creating More Severe Storms

03.06.2011
A Kansas State University climate expert attributes the increase in the number and severity of tornadoes and severe storms in 2011 to a change in weather patterns.

John Harrington Jr., professor of geography, is a synoptic climatologist who examines the factors behind distinctive weather events. He credits the increased tornado production this year to jet stream patterns in the upper atmosphere. The patterns have created synoptic events such as the April tornado outbreak in Alabama and recent tornado in Joplin, Mo. While these events are not unprecedented, they are significant, he said.

"To put them in all in one year, that's what has people talking about this stuff," Harrington said. "The fact that this is happening all in one year and in a relatively short time frame is unusual."

Special circumstances are necessary for the creation of tornadoes in the Great Plains, Harrington said. A humid atmosphere with moisture from the Gulf of Mexico and the right jet stream pattern coupled with surface convergence help to spawn a thunderstorm. Uplift from the jet stream helps to create the towering clouds associated with severe thunderstorms. Add a wind pattern set up with air filtering into the storm from the south at low levels, from the southwest at mid-levels and the northwest at higher levels, rotation of the thunderstorm cloud begins and its possible for a tornado to form.

"Unfortunately in terms of death and destruction, we've had too many of those events this year," Harrington said.

Forecasting tornadoes far ahead of time differs from the more advanced hurricane and weather prediction methods. The National Weather Service's Climate Prediction Center does not predict tornadoes, rather it attempts to predict jet stream patterns a month or so in the future.

In the wintertime the jet stream tends to flow above the southern United States. It migrates northward by the summertime. The area receiving the most tornadoes tends to shift with jet stream location as well. Oklahoma usually has a higher frequency of tornadoes in April, while Kansas experiences most of its tornadoes in May, Harrington said.

Synoptic patterns are different in autumn as the jet stream migrates back south, with much drier air across much of the U.S. While this does not preclude fall tornadoes from occurring, they are rare events. Connecting the surface conditions with the jet stream flow pattern helps a weather forecaster understand the likelihood for severe storms.

"That's pretty important in terms of understanding the kind of environment that will produce the necessary thunderstorms that rotate," Harrington said.

Extreme examples of weather have not been isolated to tornadoes. Heat waves, blizzards and severe storms have been increasingly more frequent or more severe according to U.S. data, Harrington said. These changes can be attributed to changes in the climate system.

The increase in severe weather events is drawing attention, he said.

"We have these good historical precedents for specific synoptic events, but they're starting to come more frequently together. That's what is very interesting, is that this weather system seems to be getting more variable."

John Harrington Jr., 785-532-6727, jharrin@k-state.edu

John Harrington Jr. | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>