Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wild Winds: Changes in Weather Patterns Creating More Severe Storms

A Kansas State University climate expert attributes the increase in the number and severity of tornadoes and severe storms in 2011 to a change in weather patterns.

John Harrington Jr., professor of geography, is a synoptic climatologist who examines the factors behind distinctive weather events. He credits the increased tornado production this year to jet stream patterns in the upper atmosphere. The patterns have created synoptic events such as the April tornado outbreak in Alabama and recent tornado in Joplin, Mo. While these events are not unprecedented, they are significant, he said.

"To put them in all in one year, that's what has people talking about this stuff," Harrington said. "The fact that this is happening all in one year and in a relatively short time frame is unusual."

Special circumstances are necessary for the creation of tornadoes in the Great Plains, Harrington said. A humid atmosphere with moisture from the Gulf of Mexico and the right jet stream pattern coupled with surface convergence help to spawn a thunderstorm. Uplift from the jet stream helps to create the towering clouds associated with severe thunderstorms. Add a wind pattern set up with air filtering into the storm from the south at low levels, from the southwest at mid-levels and the northwest at higher levels, rotation of the thunderstorm cloud begins and its possible for a tornado to form.

"Unfortunately in terms of death and destruction, we've had too many of those events this year," Harrington said.

Forecasting tornadoes far ahead of time differs from the more advanced hurricane and weather prediction methods. The National Weather Service's Climate Prediction Center does not predict tornadoes, rather it attempts to predict jet stream patterns a month or so in the future.

In the wintertime the jet stream tends to flow above the southern United States. It migrates northward by the summertime. The area receiving the most tornadoes tends to shift with jet stream location as well. Oklahoma usually has a higher frequency of tornadoes in April, while Kansas experiences most of its tornadoes in May, Harrington said.

Synoptic patterns are different in autumn as the jet stream migrates back south, with much drier air across much of the U.S. While this does not preclude fall tornadoes from occurring, they are rare events. Connecting the surface conditions with the jet stream flow pattern helps a weather forecaster understand the likelihood for severe storms.

"That's pretty important in terms of understanding the kind of environment that will produce the necessary thunderstorms that rotate," Harrington said.

Extreme examples of weather have not been isolated to tornadoes. Heat waves, blizzards and severe storms have been increasingly more frequent or more severe according to U.S. data, Harrington said. These changes can be attributed to changes in the climate system.

The increase in severe weather events is drawing attention, he said.

"We have these good historical precedents for specific synoptic events, but they're starting to come more frequently together. That's what is very interesting, is that this weather system seems to be getting more variable."

John Harrington Jr., 785-532-6727,

John Harrington Jr. | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>