Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How much water does the ocean have?

Geodesy researchers observe the mass distribution of the oceans

The calculation of variations in the sea level is relatively simple. It is by far more complicated to then determine the change in the water mass. A team of geodesists and oceanographers from the University of Bonn, as well as from the GFZ German Research Centre for Geosciences and the Alfred-Wegener Institute for Polar and Marine Sciences, two centres of the Helmholtz Association, have now, for the first time succeeded in doing this.

The researchers were able to observe short-term fluctuations in the spatial distribution of the ocean water masses. Their results are, amongst others, important for improved climate models.

In order to determine the ocean volume in a certain region, one only needs to know, in addition to the topography of the seabed, the height of the sea level. For this purpose, researchers have long been resorting to gauging stations and satellite altimetric procedures. The ocean mass depends, however, not only on the volume, but also on the temperature and on the salt content. Water expands when heated. Warm water, thus, weighs less than the same quantity of cold water.

For the calculation of the ocean mass it is, therefore, necessary to know the temperature and salt content profiles. However, this is not easy to quantify. "For our study we, therefore, combined different procedures so as to be able to judge changes in mass", explains Professor Dr. Juergen Kusche. The geodesist from Bonn is co-author of a scientific paper, which has just been published in the Journal of Geophysical Research.

On the one hand the researchers used data from the German-American satellite mission GRACE where the distance between two satellites (popularly known as Tom and Jerry as one chases the other in the same orbit ) are measured exactly to thousandths of millimetres. The larger the ocean mass at a certain point of the Earth, the stronger the gravitational strength. This influences the flight altitude of the satellites and thus the distance from each other. The gravitation and, hence, the mass distribution can be calculated from the change in distance between the two satellites.

The seabed bends under the weight of the water

In addition, the scientists put to use an effect which frequent book readers will have perceived. The ocean floor bends similarly to that of the shelves of an overfilled bookshelf. Thus, stationary GPS-gauging stations on land drop by up to one centimetre and move closer by a few millimetres. The heavier the water, the stronger is this movement.

"We combined these data with numerical models of the ocean" explains Kusche. "In this way we were able to prove, for the first time, that in particular in the higher latitudes, significant fluctuations of the water mass occur, and that this takes place within a time period of only one to two weeks".

So far one only knew that the mass of the world-wide ocean water varies seasonally by on average approximately three quadrillion kilogrammes (a quadrillion equals to 1 followed by 15 zeroes) - that implies a sea level variation of approx. seven to eight millimetres. This effect is brought about, among others, by variations in precipitation and evaporation as well as by the storage of water as snow. But, also, the melting of the glaciers and the ice masses in Greenland and in the Antarctic play a role.

By comparing the variation in volume and in mass the researchers want to determine changes in the amount of heat stored in the ocean. Therefore, in the near future, the long term changes are to be examined. The results will contribute to improved climatic models.

An urgent wish of the scientists is the realisation of a punctual follow-up mission for the satellite tandem GRACE. Otherwise the valuable information, particular in the registration of trends in the Earth system, obtained through GRACE, cannot be used to its full potential for Earth System and climate research.

The work is financed by the German Research Council (DFG) within the priority programme "Mass transport and mass distributions in the System Earth. The programme is coordinated at the Institute for Geodesy and Geoinformation at the University of Bonn

Dr. Frank Flechtner
GFZ Potsdam
Telefon: 08153/28-1297

F. Ossing | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>