Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much water does the ocean have?

13.11.2009
Geodesy researchers observe the mass distribution of the oceans

The calculation of variations in the sea level is relatively simple. It is by far more complicated to then determine the change in the water mass. A team of geodesists and oceanographers from the University of Bonn, as well as from the GFZ German Research Centre for Geosciences and the Alfred-Wegener Institute for Polar and Marine Sciences, two centres of the Helmholtz Association, have now, for the first time succeeded in doing this.

The researchers were able to observe short-term fluctuations in the spatial distribution of the ocean water masses. Their results are, amongst others, important for improved climate models.

In order to determine the ocean volume in a certain region, one only needs to know, in addition to the topography of the seabed, the height of the sea level. For this purpose, researchers have long been resorting to gauging stations and satellite altimetric procedures. The ocean mass depends, however, not only on the volume, but also on the temperature and on the salt content. Water expands when heated. Warm water, thus, weighs less than the same quantity of cold water.

For the calculation of the ocean mass it is, therefore, necessary to know the temperature and salt content profiles. However, this is not easy to quantify. "For our study we, therefore, combined different procedures so as to be able to judge changes in mass", explains Professor Dr. Juergen Kusche. The geodesist from Bonn is co-author of a scientific paper, which has just been published in the Journal of Geophysical Research.

On the one hand the researchers used data from the German-American satellite mission GRACE where the distance between two satellites (popularly known as Tom and Jerry as one chases the other in the same orbit ) are measured exactly to thousandths of millimetres. The larger the ocean mass at a certain point of the Earth, the stronger the gravitational strength. This influences the flight altitude of the satellites and thus the distance from each other. The gravitation and, hence, the mass distribution can be calculated from the change in distance between the two satellites.

The seabed bends under the weight of the water

In addition, the scientists put to use an effect which frequent book readers will have perceived. The ocean floor bends similarly to that of the shelves of an overfilled bookshelf. Thus, stationary GPS-gauging stations on land drop by up to one centimetre and move closer by a few millimetres. The heavier the water, the stronger is this movement.

"We combined these data with numerical models of the ocean" explains Kusche. "In this way we were able to prove, for the first time, that in particular in the higher latitudes, significant fluctuations of the water mass occur, and that this takes place within a time period of only one to two weeks".

So far one only knew that the mass of the world-wide ocean water varies seasonally by on average approximately three quadrillion kilogrammes (a quadrillion equals to 1 followed by 15 zeroes) - that implies a sea level variation of approx. seven to eight millimetres. This effect is brought about, among others, by variations in precipitation and evaporation as well as by the storage of water as snow. But, also, the melting of the glaciers and the ice masses in Greenland and in the Antarctic play a role.

By comparing the variation in volume and in mass the researchers want to determine changes in the amount of heat stored in the ocean. Therefore, in the near future, the long term changes are to be examined. The results will contribute to improved climatic models.

An urgent wish of the scientists is the realisation of a punctual follow-up mission for the satellite tandem GRACE. Otherwise the valuable information, particular in the registration of trends in the Earth system, obtained through GRACE, cannot be used to its full potential for Earth System and climate research.

The work is financed by the German Research Council (DFG) within the priority programme "Mass transport and mass distributions in the System Earth. The programme is coordinated at the Institute for Geodesy and Geoinformation at the University of Bonn

Contact:
Dr. Frank Flechtner
GFZ Potsdam
Telefon: 08153/28-1297
E-Mail: Frank.Flechtner@gfz-potsdam.de

F. Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>