Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water in Smog May Reveal Pollution Sources

03.03.2015

Vapor variations in Salt Lake City inversions tied to cars, furnaces

The chemical signature of water vapor emitted by combustion sources such as vehicles and furnaces has been found in the smoggy winter inversions that often choke Salt Lake City. The discovery may give researchers a new tool to track down the sources of pollutants and climate-changing carbon dioxide gas.


Sebastian Hoch, University of Utah

A winter temperature inversion traps smog over the Salt Lake Valley. A new University of Utah study found that as much as 13 percent of the water vapor in the smog comes from fossil-fuel combustion. The combustion vapor not only rises and falls in concert with daily traffic rush hours and overnight use of home furnaces, but also correlates with rises and falls in combustion-produced carbon dioxide, the major gas causing global warming. Measuring chemical signatures in water vapor from combustion may provide researchers a new way to trace the sources of pollutants and carbon dioxide.

University of Utah scientists measured ratios of rare and common isotopes of hydrogen and oxygen in water, and estimated that water vapor from burning fossil fuels makes up as much as 13 percent of the water vapor in smog during Salt Lake’s winter inversions, with the percentage starting smaller and increasing as the inversion persists.

“Probably the two largest sources are cars and home heating,” says geochemist Gabe Bowen, senior author of the study published online in this week’s issue of the journal Proceedings of the National Academy of Sciences.

“During inversion days, we see times with especially high levels of combustion water in the air, such as immediately following the morning and evening rush hours. Morning is more pronounced,” he says. “The other is overnight, when we see continuous high levels, most likely related to home heating. We know the water is coming from fossil-fuel combustion because its concentration rises and falls with levels of carbon dioxide emitted by fuel burning.”

And water vapor in Salt Lake’s stagnant, smoggy winter inversions “contributes to the ‘chill’ we feel during these events, and likely also to frost formation and icy roads,” says Bowen, a University of Utah associate professor of geology and geophysics.

He says water from fossil-fuel burning “is a thus-far undocumented aspect of environmental emissions during inversion season,” and the study provides a new tool for measuring how much water is added to the atmosphere by burning fuel in cars, furnaces, industry and other sources.

“The new approach may help researchers monitor sources of greenhouse gas emissions from cities and study the impact of water of combustion on urban weather, quality of life and atmospheric chemistry,” the study says.

Bowen says the new technique for measuring the sources of combustion water in urban air “is in the early stages. We have a lot of ideas about potential applications.”

The study didn’t measure how much water vapor came from vehicles versus furnaces. But “our hope is that we will be able to distinguish emissions from different sources based on their contribution to water in the atmosphere over the city,” he adds.

The researchers also hope to apply their method to measuring greenhouse gas emissions from wood stoves or industrial combustion sources that produce water vapor, and “we might be able to use it to look at the efficiency of combustion – to diagnose combustion problems in car engines or industrial processes,” Bowen says.

Water vapor makes inversions cold and damp

Bowen conducted the University of Utah study with technicians Galen Gorski and Ryan Bares; Courtenay Strong, assistant professor of atmospheric sciences; Stephen Good, postdoctoral researcher in geology and geophysics; and James Ehleringer, distinguished professor of biology. Funding came from the National Science Foundation, U.S. Department of Energy and National Oceanic and Atmospheric Administration.

The study dealt with water vapor in the “boundary layer” – the cold, smoggy layer from the ground up to the warmer air layer that caps and traps the inversion.

Bowen says water vapor from burning fuels “is not as scary as other stuff that comes out of our tailpipes. But it affects our local environment during these inversions.”

“In many or most inversion events humidity increases in the lower atmosphere, and that contributes to the apparent temperature and overnight frost formation,” he adds. “These events feel gray, gloomy and damp compared with the rest of our winter. Part of the reason is combustion-emitted water trapped in the boundary layer at the surface.”

Cocaine, evolution, murder – and now water vapor

The new study represents the latest use for stable isotope analysis, a technique that looks at ratios of rare to common weights or isotopes of elements such as hydrogen, carbon, oxygen and nitrogen. The isotopes are stable; they don’t decay radioactively.

University of Utah researchers have used the method to help identify sources of cocaine and counterfeit currency, the diets of early human ancestors and the routes traveled by elephants in Africa, and even to help identify a murder victim based on isotope analysis or hair that pointed police to the region where the victim had lived.

In natural water, the ratio of heavier, rare oxygen-18 to lighter, common oxygen-16 is low because the heavier isotope falls out first as rainstorms move inland. The same is true of deuterium, rare hydrogen-2, compared with the common isotope, hydrogen-1.

Water produced from burning or combustion is different. The ratio of hydrogen-2 to hydrogen-1 is very low, because hydrogen in fuel comes from ancient plants and microbes that preferred hydrogen-1. But the ratio of oxygen-18 to oxygen-16 is much higher compared with natural water. That’s because burning fuel uses oxygen in air – oxygen produced by plant leaves from which heavier oxygen-18 evaporated more slowly than lighter oxygen-16.

Bowen and colleagues used this unusual signature to devise a scale on which they can estimate the amount of combustion-derived vapor in any air sample. The approach works best in inversions during Utah winters, but the researchers believe they may also be able to detect water from combustion with careful measurements during times without inversions.

From Dec. 3, 2013 to Jan. 31, 2014 – a period with four inversions – Bowen and colleagues measured carbon dioxide and water vapor concentrations and water vapor isotope ratios an average of every five minutes. They found the amount of combustion water vapor in the air tracked closely with the amount of carbon dioxide. During each inversion, both increased. During three of the inversions, both gases leveled off or fell when the inversions mixed somewhat with cleaner air.

Combustion water vapor and carbon dioxide climbed from 7 to 10 a.m. due to traffic, began dropping at 10:30 a.m., then rose during the evening rush, peaked by 8 p.m. and remained level until midnight as furnaces worked. The vapor and gas levels dropped by 3 a.m., due to canyon winds and as dew and frost reduced water in the air.

The researchers estimated oxygen and hydrogen isotope composition of water from burning natural gas and gasoline, confirming their estimates for gasoline by testing tailpipe water from an inefficient old SUV and younger, more efficient sedan.

They calculated how much water from tailpipes must be added to the air to produce the levels seen in the air during inversions. They estimated conservatively that up to 13 percent of water vapor in inversions comes from burning fuels. That is a large percentage given that combustion water is only 0.004 percent of the global water cycle.

Co-author Strong created a computer model to simulate how water enters a Salt Lake City inversion from wind, rain, snow and combustion emissions, how those contribute to air moisture. The model predicted what researchers saw, including the daily patterns of traffic and furnace water vapor.

The peak in combustion water vapor during the overnight home-heating period was about half that as after morning and evening rush hours, largely because modern furnaces condense water as they extract heat.

“We might use this new tool to understand where the carbon dioxide emissions are coming from,” Bowen says. “Emissions of carbon dioxide from different sources will produce different amounts of water vapor.” The same may prove true of other combustion pollutants such as fine particulates and nitrous oxides, eventually allowing water vapor to be used to better track their sources as well.

University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773 fax: 801-585-3350
unews.utah.edu

Contacts:
Gabe Bowen, associate professor of geology and geophysics – office 801-585-7925, cell 765-337-3704, gabe.bowen@utah.edu

Lee Siegel, senior science writer, University of Utah Communications – cell 801-244-5399, lee.siegel@utah.edu

Gabe Bowen | newswise

Further reports about: Atmosphere EMISSIONS carbon dioxide combustion dioxide fuels isotope isotopes ratio water vapor

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>