Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer Temperatures Make New USDA Plant Zone Map Obsolete

14.09.2012
CCNY Researcher Devises New Approach to Mapping Plant Hardiness Zones That Accounts for Effects of Climate Change

Gardeners and landscapers may want to rethink their fall tree plantings. Warming temperatures have already made the U.S. Department of Agriculture’s new cold-weather planting guidelines obsolete, according to Dr. Nir Krakauer, assistant professor of civil engineering in The City College of New York’s Grove School of Engineering.


A map of warming across the nation showing how much USDA plant hardiness zones will warm, in degrees Farhenheit. (Credit: Nir Krakauer)

Professor Krakauer developed a new method to map cold-weather zones in the United States that takes rapidly rising temperatures into account. Analyzing recent weather data, he overhauled the Department of Agriculture’s latest plant zone map released in January.

The new USDA Plant Hardiness Zone Map, which predicts which trees and perennials can survive the winter in a given region, was a long time coming. Temperature boundaries shown in the latest version have shifted northward since the last one appeared in 1990. But the true zones have moved even further, according to Professor Krakauer’s calculations.

“Over one-third of the country has already shifted half-zones compared to the current release, and over one-fifth has shifted full zones,” Professor Krakauer wrote this summer in the journal “Advances in Meteorology.”

This means that fig trees, once challenged by frosty temperatures above North Carolina, are already weathering New York City winters thanks to changing temperatures and the insulating effect of the metropolis. Camellias, once happiest south of Ohio, may now be able to shrug off Detroit winters.

The USDA divides the country into zones based on their annual minimum temperatures – frigid dips that determine which plants perish overnight or live to flower another day. (Each zone has a minimum temperature range of 10 degrees Fahrenheit; half zones have a 5-degree range.)

Professor Krakauer found a weakness in how the agency came up with the zones, however. The USDA averaged annual minimum temperatures over a 30-year span, from 1976 to 2005, but winters have warmed significantly over that period. Zones now average about 2 degrees Fahrenheit warmer than the USDA’s 30-year average.

“What is happening is that the winter is warming faster than the summer. Since [my] hardiness temperatures are based on minimum temperatures each year, they are changing faster than the average temperatures,” Professor Krakauer said. He found that these lowest yearly temperatures warmed roughly two and a half times faster than the average temperatures.

His analysis also showed that the country is changing unevenly; more warming is occurring over the eastern interior and less in the Southwest.

Professor Krakauer’s technique will allow gardeners and farmers to reassess more frequently what will survive the next year’s winter. “The idea is that you could use this method to keep updating the zone map year by year instead of waiting for the official map – just keep adding new data and recalculate.”

He noted that similar analyses could distinguish long-lasting climate trends – in wind or rainfall, for example – from year-to-year weather variations to distinguish between what some are calling the recent “weird weather" and the natural variations in global weather.

The National Oceanic and Atmospheric Administration (NOAA) supported this study.

Professor Krakauer studies the Earth's water and carbon cycles at the Grove School of Engineering at The City College of New York, particularly the effects of global warming and other human impacts.

On the Web:
USDA Plant Hardiness Zone Map
USDA Plant Hardiness Interactive Map
Calculator for Regional Warming (by Nir Krakauer)
Hardiness Zone Change Calculator, USDA vs. Krakauer
Nir Krakauer Profile

Reference:
Nir Y. Krakauer. Estimating Climate Trends: Application to United States Plant Hardiness Zones. Advances in Meteorology, Vol. 2012 (2012), Article ID 404876, doi:10.1155/2012/404876
Media Contact
Jessa Netting P | 212-650-7615 E | jnetting@ccny.cuny.edu

Jessa Netting | EurekAlert!
Further information:
http://www.ccny.cuny.edu
http://www1.ccny.cuny.edu/advancement/news/Warmer-Temperatures-Make-New-USDA-Plant-Zone-Map-Obsolete.cfm

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>