Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer Temperatures Make New USDA Plant Zone Map Obsolete

14.09.2012
CCNY Researcher Devises New Approach to Mapping Plant Hardiness Zones That Accounts for Effects of Climate Change

Gardeners and landscapers may want to rethink their fall tree plantings. Warming temperatures have already made the U.S. Department of Agriculture’s new cold-weather planting guidelines obsolete, according to Dr. Nir Krakauer, assistant professor of civil engineering in The City College of New York’s Grove School of Engineering.


A map of warming across the nation showing how much USDA plant hardiness zones will warm, in degrees Farhenheit. (Credit: Nir Krakauer)

Professor Krakauer developed a new method to map cold-weather zones in the United States that takes rapidly rising temperatures into account. Analyzing recent weather data, he overhauled the Department of Agriculture’s latest plant zone map released in January.

The new USDA Plant Hardiness Zone Map, which predicts which trees and perennials can survive the winter in a given region, was a long time coming. Temperature boundaries shown in the latest version have shifted northward since the last one appeared in 1990. But the true zones have moved even further, according to Professor Krakauer’s calculations.

“Over one-third of the country has already shifted half-zones compared to the current release, and over one-fifth has shifted full zones,” Professor Krakauer wrote this summer in the journal “Advances in Meteorology.”

This means that fig trees, once challenged by frosty temperatures above North Carolina, are already weathering New York City winters thanks to changing temperatures and the insulating effect of the metropolis. Camellias, once happiest south of Ohio, may now be able to shrug off Detroit winters.

The USDA divides the country into zones based on their annual minimum temperatures – frigid dips that determine which plants perish overnight or live to flower another day. (Each zone has a minimum temperature range of 10 degrees Fahrenheit; half zones have a 5-degree range.)

Professor Krakauer found a weakness in how the agency came up with the zones, however. The USDA averaged annual minimum temperatures over a 30-year span, from 1976 to 2005, but winters have warmed significantly over that period. Zones now average about 2 degrees Fahrenheit warmer than the USDA’s 30-year average.

“What is happening is that the winter is warming faster than the summer. Since [my] hardiness temperatures are based on minimum temperatures each year, they are changing faster than the average temperatures,” Professor Krakauer said. He found that these lowest yearly temperatures warmed roughly two and a half times faster than the average temperatures.

His analysis also showed that the country is changing unevenly; more warming is occurring over the eastern interior and less in the Southwest.

Professor Krakauer’s technique will allow gardeners and farmers to reassess more frequently what will survive the next year’s winter. “The idea is that you could use this method to keep updating the zone map year by year instead of waiting for the official map – just keep adding new data and recalculate.”

He noted that similar analyses could distinguish long-lasting climate trends – in wind or rainfall, for example – from year-to-year weather variations to distinguish between what some are calling the recent “weird weather" and the natural variations in global weather.

The National Oceanic and Atmospheric Administration (NOAA) supported this study.

Professor Krakauer studies the Earth's water and carbon cycles at the Grove School of Engineering at The City College of New York, particularly the effects of global warming and other human impacts.

On the Web:
USDA Plant Hardiness Zone Map
USDA Plant Hardiness Interactive Map
Calculator for Regional Warming (by Nir Krakauer)
Hardiness Zone Change Calculator, USDA vs. Krakauer
Nir Krakauer Profile

Reference:
Nir Y. Krakauer. Estimating Climate Trends: Application to United States Plant Hardiness Zones. Advances in Meteorology, Vol. 2012 (2012), Article ID 404876, doi:10.1155/2012/404876
Media Contact
Jessa Netting P | 212-650-7615 E | jnetting@ccny.cuny.edu

Jessa Netting | EurekAlert!
Further information:
http://www.ccny.cuny.edu
http://www1.ccny.cuny.edu/advancement/news/Warmer-Temperatures-Make-New-USDA-Plant-Zone-Map-Obsolete.cfm

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>