Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unmanned aircraft successfully tested as tool for measuring changes in polar ice sheets

03.04.2014

Boldly going where larger, human-piloted planes cannot, they promise to close a key gap in knowledge for climate modelers

Scientists studying the behavior of the world's ice sheets--and the future implications of ice sheet behavior for global sea-level rise--may soon have a new airborne tool that will allow radar measurements that previously would have been prohibitively expensive or difficult to carry out with manned aircraft.


The UAS lands in Antarctica.

Credit: University of Kansas

In a paper published in the March/ April edition of IEEE Geoscience and Remote Sensing Magazine, researchers at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas noted that they have successfully tested the use of a compact radar system integrated on a small, lightweight Unmanned Aircraft System (UAS) to look through the ice and map the topography underlying rapidly moving glaciers.

"We're excited by the performance we saw from our radar and UAS during the field campaign. The results of this effort are significant, in that the miniaturized radar integrated into a UAS promises to make this technology more broadly accessible to the research community," said Rick Hale, associate professor of aerospace engineering and associate director of technology for CReSIS.

With support from the National Science Foundation's Division of Polar Programs and the State of Kansas, the CReSIS team recently successfully tested the UAS at a field camp in West Antarctica.

The measurements were the first-ever successful sounding of glacial ice with a UAS-based radar. If further tests in the Arctic prove as successful, the UAS could eventually be routinely deployed to measure rapidly changing areas of the Greenland and Antarctic ice sheets.

The use of unmanned aircraft in Antarctica, which is becoming a subject of wide international interest, is scheduled to be discussed in May at the upcoming Antarctic Treaty Consultative Meeting in Brazil.

The small but agile UAS has a takeoff weight of about 38.5 kilograms (85 pounds) and a range of approximately 100 kilometers (62 miles). The compact radar system weighs only two kilograms, and the antenna is structurally integrated into the wing of the aircraft.

The radar-equipped UAS appears to be an ideal tool for reaching areas that otherwise would be exceptionally difficult to map. The light weight and small size of the vehicle and sensor enable them to be readily transported to remote field locations, and the airborne maneuverability enables the tight flight patterns required for fine scale imaging. The UAS can be used to collect data over flight tracks about five meters apart to allow for more thorough coverage of a given area.

According to Shawn Keshmiri, an assistant professor of aerospace engineering, "a small UAS also uses several orders of magnitude less fuel per hour than the traditional manned aircraft used today for ice sounding."

This advantage is of great benefit, the researchers point out, "in remote locations, such as Antarctica, [where] the cost associated with transporting and caching fuel is very high."

The vast polar ice sheets hold an enormous amount of the Earth's freshwater--so much so that in the unlikely event of a sudden melt, global sea level would rise on the order of 66 meters (216 feet).

Even a fraction of the melt, and the associated sea-level, rise would cause severe problems to people living in more temperate areas of the globe, so scientists and engineers are seeking quicker, less expensive ways to measure and eventually predict exactly what it is that the ice sheets are doing and how their behavior may change in the future.

Until now, the lack of fine-resolution information about the topography underlying fast-flowing glaciers, which contain huge amounts of freshwater and which govern the flow of the interior ice, makes it difficult to model their behavior accurately.

"There is therefore an urgent need to measure the ice thickness of fast-flowing glaciers with fine resolution to determine bed topography and basal conditions," the researchers write. "This information will, in turn, be used to improve ice-sheet models and generate accurate estimates of sea level rise in a warming climate. Without proper representation of these fast-flowing glaciers, advancements in ice-sheet modeling will remain elusive."

With the successful test completed in the Antarctic, the researchers will begin analyzing the data collected during this field season, miniaturizing the radar further and reducing its weight to 1.5 kilograms (3.3 pounds) or less, and increasing the UAS radar transmitting power.

In the coming months, they will also perform additional test flights in Kansas to further evaluate the avionics and flight-control systems, as well as optimize the radar and transmitting systems.

In 2014 or 2015, they plan to deploy the UAS to Greenland to collect data over areas with extremely rough surfaces and fast-flowing glaciers, such as Jakobshavn, which is among the fastest flowing glaciers in the world.

For b-roll of the UAS test flights in Antarctica, please contact Dena Headlee, dheadlee@nsf.gov / (703) 292-7739

Media Contacts
Peter West, NSF, (703) 292-7530, pwest@nsf.gov
Cody Howard, University of Kansas, (785) 864-2936, codyh@ku.edu

Program Contacts
Julie M. Palais, NSF, (703) 292-8033, jpalais@nsf.gov

Principal Investigators
Prasad Gogineni, University of Kansas, (785) 864.8800, gogineni@eecs.ku.edu

Co-Investigators
Rick Hale, University of Kansas, (785) 864-2949, rhale@ku.edu

Related Websites
Center for Remote Sensing of Ice Sheets: https://www.cresis.ku.edu/

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Peter West | EurekAlert!

Further reports about: Aerospace Engineering global sea level topography

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>