Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Chemistry Reveals Eruption of Ancient Materials Once at Earth’s Surface

26.04.2013
New study supports theory that Earth’s earliest crust was folded back into its mantle and returned to the surface in volcanoes

An international team of researchers, including Scripps Institution of Oceanography, UC San Diego, geochemist James Day, has found new evidence that material contained in oceanic lava flows originated in Earth’s ancient Archean crust. These findings support the theory that much of the Earth’s original crust has been recycled by the process of subduction, helping to explain how the Earth has formed and changed over time.

The Archean geologic eon, Earth’s second oldest, dating from 3.8 to 2.5 billion years ago, is the source of the oldest exposed rock formations on the planet’s surface. (Archean rocks are known from Greenland, the Canadian Shield, the Baltic Shield, Scotland, India, Brazil, western Australia, and southern Africa.) Although the first continents were formed during the Archean eon, rock of this age makes up only around seven percent of the world's current crust.

“Our new results are important because they provide strong evidence not only to tie materials that were once on Earth's surface to an entire cycle of subduction, storage in the mantle, and return to the surface as lavas, but they also place a firm time constraint on when plate tectonics began; no later than 2.5 billion years ago,” said Day. “This is because mass independent sulfur signatures have only been shown to occur in the atmosphere during periods of low oxygenation prior to the rise of oxygen-exhaling organisms.”

The new study, which will be published in the April 24 issue of the journal Nature, adds further support to the theory that most of the Archean crust was subducted or folded back into the Earth’s mantle, evidence of which is seen in the presence of specific sulfur isotopes found in some oceanic lava flows.

According to the researchers, because terrestrial independently fractionated (MIF) sulfur-isotope isotope signatures were generated exclusively through atmospheric photochemical reactions until about 2.5 billion years ago, material containing such isotopes must have originated in the Archean crust. In the new study, the researchers found MIF sulfur-isotope signatures in olivine-hosted sulfides from relatively young (20-million-year-old) ocean island basalts (OIB) from Mangaia, Cook Islands (Polynesia), providing evidence that the mantle is the only possible source of the ancient Archean materials found in the Mangaia lavas.

“The discovery of MIF-S isotope in these young oceanic lavas suggests that sulfur—likely derived from the hydrothermally-altered oceanic crust—was subducted into the mantle more than 2.5 billion years ago and recycled into the mantle source of the Mangaia lavas,” said Rita Cabral, the study’s primary author and a graduate student in Boston University’s Department of Earth and Environment.

The data also complement evidence for sulfur recycling of ancient sedimentary materials to the subcontinental lithospheric mantle previously identified in diamond inclusions.

Other study co-authors are Matthew G. Jackson of Boston University; Estelle F. Rose-Koga and Kenneth T. Koga of Université Blaise Pascal in Clermont-Ferrand, France; Martin J. Whitehouse of the Swedish Museum of Natural History and Stockholm University, Stockholm, Sweden; Michael A. Antonelli and James Farquhar of the University of Maryland; and Erik H. Hauri of the Carnegie Institution of Washington in Washington, D.C.
Media Contact
Robert Monroe, 858-534-3624, scrippsnews@ucsd.edu
Secondary media contact:
Mario Aguilera, 858-534-3624, scrippsnews@ucsd.edu

Robert Monroe | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>