Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding ocean climate

14.12.2009
High-resolution computer simulations performed by scientists at the National Oceanography Centre, Southampton (NOCS) are helping to understand the inflow of North Atlantic water to the Arctic Ocean and how this influences ocean climate.

The summer of 2007 saw a record retreat in Arctic sea ice, and in general Arctic climate has become steadily warmer since the early 1990s. This has changed both sea ice drift and upper ocean circulation.

The warm North Atlantic water intrudes into the central Arctic Ocean through Fram Strait, the deep channel between Greenland and Spitsbergen that connects the Nordic Seas to the Arctic Ocean, contributing to sea ice melting.

"We need to understand what is going on because changes in the Arctic Ocean can influence climate around the world," said Dr Yevgeny Aksenov of NOCS: "The worry is that freshwater from melting ice and increased atmospheric precipitation in the Arctic could ultimately slow the overturning circulation of the North Atlantic, with serious consequences for global climate."

The researchers used a high-resolution computer model of ocean and sea ice, taking into account the shape of the seabed, and the affects of ice melting, snow and rainfall, solar radiation, and winds. The simulations were verified using long-term measurements of ocean currents and other key climatological and oceanographical data.

"Computers are now powerful enough to run multi-decadal global simulations at high resolution," said Dr Aksenov: "This helps to understand how the ocean is changing and to plan observational programmes so as to make measurements at sea more efficient."

The researchers find that between 1989 and 2009, about half of the salty North Atlantic water entering the Arctic Ocean came through Fram Strait, and half through the Barents Sea, north of Norway and Russia. However, most of the heat entered the Arctic Ocean through Fram Strait.

Based on their simulations and available observations, they propose a new scheme for the inflow of North Atlantic water into the Arctic Ocean, involving three main routes.

The first delivers warm saline water to the Arctic Ocean through Fram Strait. The other two bring cooled and freshened North Atlantic water to the Arctic Ocean via the Barents Sea.

A northern branch delivers water from the western Barents Sea, mixed to some extent with the Fram Strait branch. Here, North Atlantic water interacts with Arctic waters, resulting in fresh, cold water overlying saltier water below the mixed layer at a depth of around 50-170 metres.

The southern branch supplies the Arctic Ocean with warmer and more saline bottom water formed in the southeastern Barents Sea via full-depth convection and mixing.

Both the northern and southern branches of the Barents Sea flow deliver North Atlantic water to the Arctic Ocean via the 620 metre deep St Anna's Trough, located east of the Franz Josef archipelago in the far north of Russia. Together they transport around one and a half million cubic metres of water a second.

"Our research is leading to a physically based picture, our eventual goal being a comprehensive understanding of the mechanisms driving ocean climate change," said Dr Aksenov.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact: Dr Yevgeny Aksenov: email yka@noc.soton.ac.uk; telephone +44 (0) 23 8059 9592

The research was supported by the RAPID Climate Change Programme and Arctic Synoptic Basin-wide Oceanography Consortium, Natural Environment Research Council, UK.

The researchers are Yevgeny Aksenov, Sheldon Bacon, Andrew Coward and George Nurser (all of NOCS).

Publication: Aksenov, Y. et al. The North Atlantic inflow to the Arctic Ocean: High-resolution model study. Journal of Marine Systems 79. 1-22 (2010). Published on line in 2009. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF5-4WF4J2T-1&_user=126770&_rdoc=1&_fmt=&_orig=search&_sort=d&_
docanchor=&view=c&_acct=C000010399&_version=1&_urlVersion=0&_
userid=126770&md5=738732b02c27e84b345b7f166e5c063a
The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.nature.com

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>