Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding ocean climate

14.12.2009
High-resolution computer simulations performed by scientists at the National Oceanography Centre, Southampton (NOCS) are helping to understand the inflow of North Atlantic water to the Arctic Ocean and how this influences ocean climate.

The summer of 2007 saw a record retreat in Arctic sea ice, and in general Arctic climate has become steadily warmer since the early 1990s. This has changed both sea ice drift and upper ocean circulation.

The warm North Atlantic water intrudes into the central Arctic Ocean through Fram Strait, the deep channel between Greenland and Spitsbergen that connects the Nordic Seas to the Arctic Ocean, contributing to sea ice melting.

"We need to understand what is going on because changes in the Arctic Ocean can influence climate around the world," said Dr Yevgeny Aksenov of NOCS: "The worry is that freshwater from melting ice and increased atmospheric precipitation in the Arctic could ultimately slow the overturning circulation of the North Atlantic, with serious consequences for global climate."

The researchers used a high-resolution computer model of ocean and sea ice, taking into account the shape of the seabed, and the affects of ice melting, snow and rainfall, solar radiation, and winds. The simulations were verified using long-term measurements of ocean currents and other key climatological and oceanographical data.

"Computers are now powerful enough to run multi-decadal global simulations at high resolution," said Dr Aksenov: "This helps to understand how the ocean is changing and to plan observational programmes so as to make measurements at sea more efficient."

The researchers find that between 1989 and 2009, about half of the salty North Atlantic water entering the Arctic Ocean came through Fram Strait, and half through the Barents Sea, north of Norway and Russia. However, most of the heat entered the Arctic Ocean through Fram Strait.

Based on their simulations and available observations, they propose a new scheme for the inflow of North Atlantic water into the Arctic Ocean, involving three main routes.

The first delivers warm saline water to the Arctic Ocean through Fram Strait. The other two bring cooled and freshened North Atlantic water to the Arctic Ocean via the Barents Sea.

A northern branch delivers water from the western Barents Sea, mixed to some extent with the Fram Strait branch. Here, North Atlantic water interacts with Arctic waters, resulting in fresh, cold water overlying saltier water below the mixed layer at a depth of around 50-170 metres.

The southern branch supplies the Arctic Ocean with warmer and more saline bottom water formed in the southeastern Barents Sea via full-depth convection and mixing.

Both the northern and southern branches of the Barents Sea flow deliver North Atlantic water to the Arctic Ocean via the 620 metre deep St Anna's Trough, located east of the Franz Josef archipelago in the far north of Russia. Together they transport around one and a half million cubic metres of water a second.

"Our research is leading to a physically based picture, our eventual goal being a comprehensive understanding of the mechanisms driving ocean climate change," said Dr Aksenov.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact: Dr Yevgeny Aksenov: email yka@noc.soton.ac.uk; telephone +44 (0) 23 8059 9592

The research was supported by the RAPID Climate Change Programme and Arctic Synoptic Basin-wide Oceanography Consortium, Natural Environment Research Council, UK.

The researchers are Yevgeny Aksenov, Sheldon Bacon, Andrew Coward and George Nurser (all of NOCS).

Publication: Aksenov, Y. et al. The North Atlantic inflow to the Arctic Ocean: High-resolution model study. Journal of Marine Systems 79. 1-22 (2010). Published on line in 2009. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF5-4WF4J2T-1&_user=126770&_rdoc=1&_fmt=&_orig=search&_sort=d&_
docanchor=&view=c&_acct=C000010399&_version=1&_urlVersion=0&_
userid=126770&md5=738732b02c27e84b345b7f166e5c063a
The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.nature.com

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates

21.02.2018 | Life Sciences

Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region

21.02.2018 | Power and Electrical Engineering

A variety of designs for OLED lighting in one easy kit

21.02.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>