Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding ocean climate

14.12.2009
High-resolution computer simulations performed by scientists at the National Oceanography Centre, Southampton (NOCS) are helping to understand the inflow of North Atlantic water to the Arctic Ocean and how this influences ocean climate.

The summer of 2007 saw a record retreat in Arctic sea ice, and in general Arctic climate has become steadily warmer since the early 1990s. This has changed both sea ice drift and upper ocean circulation.

The warm North Atlantic water intrudes into the central Arctic Ocean through Fram Strait, the deep channel between Greenland and Spitsbergen that connects the Nordic Seas to the Arctic Ocean, contributing to sea ice melting.

"We need to understand what is going on because changes in the Arctic Ocean can influence climate around the world," said Dr Yevgeny Aksenov of NOCS: "The worry is that freshwater from melting ice and increased atmospheric precipitation in the Arctic could ultimately slow the overturning circulation of the North Atlantic, with serious consequences for global climate."

The researchers used a high-resolution computer model of ocean and sea ice, taking into account the shape of the seabed, and the affects of ice melting, snow and rainfall, solar radiation, and winds. The simulations were verified using long-term measurements of ocean currents and other key climatological and oceanographical data.

"Computers are now powerful enough to run multi-decadal global simulations at high resolution," said Dr Aksenov: "This helps to understand how the ocean is changing and to plan observational programmes so as to make measurements at sea more efficient."

The researchers find that between 1989 and 2009, about half of the salty North Atlantic water entering the Arctic Ocean came through Fram Strait, and half through the Barents Sea, north of Norway and Russia. However, most of the heat entered the Arctic Ocean through Fram Strait.

Based on their simulations and available observations, they propose a new scheme for the inflow of North Atlantic water into the Arctic Ocean, involving three main routes.

The first delivers warm saline water to the Arctic Ocean through Fram Strait. The other two bring cooled and freshened North Atlantic water to the Arctic Ocean via the Barents Sea.

A northern branch delivers water from the western Barents Sea, mixed to some extent with the Fram Strait branch. Here, North Atlantic water interacts with Arctic waters, resulting in fresh, cold water overlying saltier water below the mixed layer at a depth of around 50-170 metres.

The southern branch supplies the Arctic Ocean with warmer and more saline bottom water formed in the southeastern Barents Sea via full-depth convection and mixing.

Both the northern and southern branches of the Barents Sea flow deliver North Atlantic water to the Arctic Ocean via the 620 metre deep St Anna's Trough, located east of the Franz Josef archipelago in the far north of Russia. Together they transport around one and a half million cubic metres of water a second.

"Our research is leading to a physically based picture, our eventual goal being a comprehensive understanding of the mechanisms driving ocean climate change," said Dr Aksenov.

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Images are available from the NOCS Press Office (Tel. 023 8059 6100).

Scientist contact: Dr Yevgeny Aksenov: email yka@noc.soton.ac.uk; telephone +44 (0) 23 8059 9592

The research was supported by the RAPID Climate Change Programme and Arctic Synoptic Basin-wide Oceanography Consortium, Natural Environment Research Council, UK.

The researchers are Yevgeny Aksenov, Sheldon Bacon, Andrew Coward and George Nurser (all of NOCS).

Publication: Aksenov, Y. et al. The North Atlantic inflow to the Arctic Ocean: High-resolution model study. Journal of Marine Systems 79. 1-22 (2010). Published on line in 2009. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF5-4WF4J2T-1&_user=126770&_rdoc=1&_fmt=&_orig=search&_sort=d&_
docanchor=&view=c&_acct=C000010399&_version=1&_urlVersion=0&_
userid=126770&md5=738732b02c27e84b345b7f166e5c063a
The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.nature.com

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>