Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Underground fungi detected from space


A new way to study large-scale forest response to climate change

Just as a person's skin indicates if s/he has a healthy diet, colored satellite images of forests in the Smithsonian's Forest Global Earth Observatory (ForestGEO) indicate if a forest has a healthy diet. Information about the trees' access to nutrients based on its relationships with two different types of underground fungi is now detectable from space, making it possible for scientists to measure ecosystem productivity and responses to environmental change on vast scales.

The Smithsonian coordinates the ForestGEO global network of forest monitoring sites run by institutions in 24 countries. More than 6 million trees representing 10,000 species are mapped, marked and measured using the same techniques. Researchers from many fields use the resulting data set to better understand forest dynamics on a global scale.

Credit: STRI/ForestGEO

"Every tree species has a distinct spectral signal, a kind of measurable aura," said Sean McMahon, temperate program coordinator of the ForestGEO network. "Now we can tell who their underground friends are, an indicator of their nutrient status, from the sky."

Trees form beneficial relationships with soil fungi. The thread-like hyphae of the fungi spread out like a huge net through the soil, helping trees gather water and nutrients in exchange for sugars made by the trees' photosynthesis. Joshua Fisher from NASA's Jet Propulsion Laboratory and UCLA and his colleagues developed a way to detect and map the associations between forests and fungi.

They compared Thematic Mapper radiance data from Landsat satellites with traditional data about fungal associations of different species from 130,000 individual trees in long-term forest-monitoring plots at the Smithsonian's Conservation Biology Institute in Virginia, the Lilly-Dickey Woods in Indiana, Wabikon in Wisconsin's Chequamegon-Nicolet Forest and at the Tyson Research Center in Missouri.

"We discovered that groups of tree species associating with one type of fungi were spectrally distinct from groups of species associating with other types of fungi," Fisher said.

Based on the spectral data, they could tell whether trees formed associations with ectomycorrhizal fungi (ECM), that only grow on and around root cells, or arbuscular mycorrhizal fungi (AM), which penetrate the cells. Scientists knew which tree species associate with which fungi, but would have been impossible to map every single tree across landscapes or continents by hand.

Fungal associations indicate complex processes that are much harder to get a handle on.

AM-associated trees usually have higher leaf phosphorus content, leaf out earlier and quickly decomposing leaf litter, resulting in faster nutrient cycling. ECM-associated trees are usually characterized by slower nutrient cycling. AM-associated trees are more common in the tropics, and ECM trees in boreal forests, but temperate forests have a mix of both. The mycorrhizal association also depends on land-use history.

Maples, tulip poplars and white ashes are all unique species with unique spectral signatures, and they all only associate with AM fungi. Oaks, American beeches, and hickories only associate with ECM fungi. Fisher and colleagues asked whether there are spectral signatures in common among the first group that differ from spectral signatures in common among the second group. Based on their observations they were able to predict 77 percent of the variation in mycorrhizal distribution within the forest plots.

Researchers in the 30-year-old ForestGEO network have accumulated an enormous amount of knowledge from forests around the world. In addition to studying the relationship between tree species and fungi, they map and measure more than six million individual trees at five-year intervals, take data on seasonal changes and measure leaf spectral properties using canopy cranes and drones, airplanes equipped with LiDAR technology and other tools that allow information to be integrated from local scales up to global scales.

The team will extend the analysis to more of the 63 research plots in the Smithsonian's ForestGEO network where scientists use the same methods, making the global comparisons needed to understand climate change, pollution and deforestation and reforestation possible.


The authors are affiliated with the Smithsonian Conservation Biology Institute, the National Zoological Park; the Jet Propulsion Lab at the California Institute of Technology; the Joint Institute for Regional Earth System Science and Engineering at the University of California, Los Angeles; the Center for the Study of Institutions, Populations and Environmental Change at Indiana University; the Department of Biology, West Virginia University; the Department of Geography, Indiana University, the Yale School of Forestry and Environmental Studies; the Department of Biology, Washington University; the Conservation Ecology Center; the U.S. Geological Survey, National Research Program-Eastern Branch; the Department of Natural and Applied Sciences and Cofrin Center for Biodiversity, University of Wisconsin, Green Bay; and the Department of Biology, Indiana University.

Fisher, J.B., Sweeny, S., Brzostek, E.R., Evans, T.P., Johnson, D.J., Myers, J.A., Bourg, N.A., Wolf, A.T., Howe, R.W., Phillips, R.P. 2016. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Global Change Biol.

Media Contact

Beth King


Beth King | EurekAlert!

Further reports about: Biology Department of Biology ECM Tropical Research fungi tree species

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>