Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underground fungi detected from space

04.05.2016

A new way to study large-scale forest response to climate change

Just as a person's skin indicates if s/he has a healthy diet, colored satellite images of forests in the Smithsonian's Forest Global Earth Observatory (ForestGEO) indicate if a forest has a healthy diet. Information about the trees' access to nutrients based on its relationships with two different types of underground fungi is now detectable from space, making it possible for scientists to measure ecosystem productivity and responses to environmental change on vast scales.


The Smithsonian coordinates the ForestGEO global network of forest monitoring sites run by institutions in 24 countries. More than 6 million trees representing 10,000 species are mapped, marked and measured using the same techniques. Researchers from many fields use the resulting data set to better understand forest dynamics on a global scale.

Credit: STRI/ForestGEO

"Every tree species has a distinct spectral signal, a kind of measurable aura," said Sean McMahon, temperate program coordinator of the ForestGEO network. "Now we can tell who their underground friends are, an indicator of their nutrient status, from the sky."

Trees form beneficial relationships with soil fungi. The thread-like hyphae of the fungi spread out like a huge net through the soil, helping trees gather water and nutrients in exchange for sugars made by the trees' photosynthesis. Joshua Fisher from NASA's Jet Propulsion Laboratory and UCLA and his colleagues developed a way to detect and map the associations between forests and fungi.

They compared Thematic Mapper radiance data from Landsat satellites with traditional data about fungal associations of different species from 130,000 individual trees in long-term forest-monitoring plots at the Smithsonian's Conservation Biology Institute in Virginia, the Lilly-Dickey Woods in Indiana, Wabikon in Wisconsin's Chequamegon-Nicolet Forest and at the Tyson Research Center in Missouri.

"We discovered that groups of tree species associating with one type of fungi were spectrally distinct from groups of species associating with other types of fungi," Fisher said.

Based on the spectral data, they could tell whether trees formed associations with ectomycorrhizal fungi (ECM), that only grow on and around root cells, or arbuscular mycorrhizal fungi (AM), which penetrate the cells. Scientists knew which tree species associate with which fungi, but would have been impossible to map every single tree across landscapes or continents by hand.

Fungal associations indicate complex processes that are much harder to get a handle on.

AM-associated trees usually have higher leaf phosphorus content, leaf out earlier and quickly decomposing leaf litter, resulting in faster nutrient cycling. ECM-associated trees are usually characterized by slower nutrient cycling. AM-associated trees are more common in the tropics, and ECM trees in boreal forests, but temperate forests have a mix of both. The mycorrhizal association also depends on land-use history.

Maples, tulip poplars and white ashes are all unique species with unique spectral signatures, and they all only associate with AM fungi. Oaks, American beeches, and hickories only associate with ECM fungi. Fisher and colleagues asked whether there are spectral signatures in common among the first group that differ from spectral signatures in common among the second group. Based on their observations they were able to predict 77 percent of the variation in mycorrhizal distribution within the forest plots.

Researchers in the 30-year-old ForestGEO network have accumulated an enormous amount of knowledge from forests around the world. In addition to studying the relationship between tree species and fungi, they map and measure more than six million individual trees at five-year intervals, take data on seasonal changes and measure leaf spectral properties using canopy cranes and drones, airplanes equipped with LiDAR technology and other tools that allow information to be integrated from local scales up to global scales.

The team will extend the analysis to more of the 63 research plots in the Smithsonian's ForestGEO network where scientists use the same methods, making the global comparisons needed to understand climate change, pollution and deforestation and reforestation possible.

###

The authors are affiliated with the Smithsonian Conservation Biology Institute, the National Zoological Park; the Jet Propulsion Lab at the California Institute of Technology; the Joint Institute for Regional Earth System Science and Engineering at the University of California, Los Angeles; the Center for the Study of Institutions, Populations and Environmental Change at Indiana University; the Department of Biology, West Virginia University; the Department of Geography, Indiana University, the Yale School of Forestry and Environmental Studies; the Department of Biology, Washington University; the Conservation Ecology Center; the U.S. Geological Survey, National Research Program-Eastern Branch; the Department of Natural and Applied Sciences and Cofrin Center for Biodiversity, University of Wisconsin, Green Bay; and the Department of Biology, Indiana University.

Fisher, J.B., Sweeny, S., Brzostek, E.R., Evans, T.P., Johnson, D.J., Myers, J.A., Bourg, N.A., Wolf, A.T., Howe, R.W., Phillips, R.P. 2016. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Global Change Biol. onlinelibrary.wiley.com/doi/10.1111/gcb.13264/full

Media Contact

Beth King
kingb@si.edu
01-150-721-28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

Further reports about: Biology Department of Biology ECM Tropical Research fungi tree species

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>