Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM Research Improves Temperature Modeling Across Mountainous Landscapes

19.08.2014

New research by University of Montana doctoral student Jared Oyler provides improved computer models for estimating temperature across mountainous landscapes.

The work was published Aug. 12 in the International Journal of Climatology in an article titled “Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature.”

Collaborating with UM faculty co-authors Ashley Ballantyne, Kelsey Jencso, Michael Sweet and Steve Running, Oyler provided a new climate dataset for ecological and hydrological research and natural resource management.

“I think we have addressed several limitations of existing temperature datasets,” Oyler said.

He used data from weather stations, as well as atmospheric weather model data and satellite-based observations, to come up with daily temperature estimates from 1948 to 2012 for every square kilometer in the contiguous United States.

Many existing datasets generally assume that temperatures are cooler at higher elevations. However, inversions often cause the reverse. For example, on a calm winter day or summer night in Missoula, the air may be warmer on Mount Sentinel than in the valley. Oyler’s dataset addresses the oddities of inversions by combining weather station data with fine scale satellite-based observations of the land surface.

Accurate, spatially based estimates of historical air temperature within mountainous areas are critical as scientists and land managers look at temperature-driven changes to vegetation, wildlife habitat, wildfire and snowpack.

Additionally, the dataset is the first fine-scale work to correct for artificial trends within weather station data caused by changes in equipment or weather station locations. It also is the first to provide direct estimates of uncertainty and to provide open-source code.

“As an open-source dataset, researchers can easily access and use the data and understand its strengths and limitations and improve it themselves,” Oyler said.

The research was funded by the U.S. Geological Survey North Central Climate Science Center and the National Science Foundation’s Experimental Program to Stimulate Competitive Research.

Contact: Jared Oyler, Ph.D. student, UM College of Forestry and Conservation, 406-243-6311, jared.oyler@ntsg.umt.edu

Jared Oyler | Eurek Alert!
Further information:
http://news.umt.edu/2014/08/081214temp.php

Further reports about: Climate Conservation Geological Modeling habitat observations skin temperature

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>