Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM Research Improves Temperature Modeling Across Mountainous Landscapes

19.08.2014

New research by University of Montana doctoral student Jared Oyler provides improved computer models for estimating temperature across mountainous landscapes.

The work was published Aug. 12 in the International Journal of Climatology in an article titled “Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature.”

Collaborating with UM faculty co-authors Ashley Ballantyne, Kelsey Jencso, Michael Sweet and Steve Running, Oyler provided a new climate dataset for ecological and hydrological research and natural resource management.

“I think we have addressed several limitations of existing temperature datasets,” Oyler said.

He used data from weather stations, as well as atmospheric weather model data and satellite-based observations, to come up with daily temperature estimates from 1948 to 2012 for every square kilometer in the contiguous United States.

Many existing datasets generally assume that temperatures are cooler at higher elevations. However, inversions often cause the reverse. For example, on a calm winter day or summer night in Missoula, the air may be warmer on Mount Sentinel than in the valley. Oyler’s dataset addresses the oddities of inversions by combining weather station data with fine scale satellite-based observations of the land surface.

Accurate, spatially based estimates of historical air temperature within mountainous areas are critical as scientists and land managers look at temperature-driven changes to vegetation, wildlife habitat, wildfire and snowpack.

Additionally, the dataset is the first fine-scale work to correct for artificial trends within weather station data caused by changes in equipment or weather station locations. It also is the first to provide direct estimates of uncertainty and to provide open-source code.

“As an open-source dataset, researchers can easily access and use the data and understand its strengths and limitations and improve it themselves,” Oyler said.

The research was funded by the U.S. Geological Survey North Central Climate Science Center and the National Science Foundation’s Experimental Program to Stimulate Competitive Research.

Contact: Jared Oyler, Ph.D. student, UM College of Forestry and Conservation, 406-243-6311, jared.oyler@ntsg.umt.edu

Jared Oyler | Eurek Alert!
Further information:
http://news.umt.edu/2014/08/081214temp.php

Further reports about: Climate Conservation Geological Modeling habitat observations skin temperature

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>