Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC San Diego team achieves petaflop-level earthquake simulations on GPU-powered supercomputers

A team of researchers at the San Diego Supercomputer Center (SDSC) and the Department of Electronic and Computer Engineering at the University of California, San Diego, has developed a highly scalable computer code that promises to dramatically cut both research times and energy costs in simulating seismic hazards throughout California and elsewhere.

The team, led by Yifeng Cui, a computational scientist at SDSC, developed the scalable GPU (graphical processing units) accelerated code for use in earthquake engineering and disaster management through regional earthquake simulations at the petascale level as part of a larger computational effort coordinated by the Southern California Earthquake Center (SCEC). San Diego State University (SDSU) is also part of this collaborative effort in pushing the envelope toward extreme-scale earthquake computing.

"The increased capability of GPUs, combined with the high-level GPU programming language CUDA, has provided tremendous horsepower required for acceleration of numerically intensive 3D simulation of earthquake ground motions," said Cui, who recently presented the team's new development at the NVIDIA 2013 GPU Technology Conference (GTC) in San Jose, Calif.

A technical paper based on this work will be presented June 5-7 at the 2013 International Conference on Computational Science Conference in Barcelona, Spain.

The accelerated code, which was done using GPUs as opposed to CPUs, or central processing units, is based on a widely-used wave propagation code called AWP-ODC, which stands for Anelastic Wave Propagation by Olsen, Day and Cui. It was named after Kim Olsen and Steven Day, geological science professors at San Diego State University (SDSU), and SDSC's Cui. The research team restructured the code to exploit high performance and throughput, memory locality, and overlapping of computation and communication, which made it possible to scale the code linearly to more than 8,000 NVIDIA Kepler GPU accelerators.

Sustained One Petaflop/s Performance

The team performed GPU-based benchmark simulations of the 5.4 magnitude earthquake that occurred in July 2008 below Chino Hills, near Los Angeles. Compute systems included Keeneland, managed by Georgia Tech, Oak Ridge National Laboratory (ORNL) and the National Institute for Computational Sciences (NICS), and also part of the National Science Foundation's (NSF) eXtreme Science and Engineering Discovery Environment (XSEDE), and Blue Waters, based at the National Center for Supercomputing Applications (NCSA). Also used was the Titan supercomputer, based at ORNL and funded by the U.S. Department of Energy. Titan is equipped with Cray XK7 systems and NIVIDIA's Tesla K20X GPU accelerators.

The benchmarks, run on Titan, showed a five-fold speedup over the heavily optimized CPU code on the same system, and a sustained performance of one petaflop per second (one quadrillion calculations per second) on the tested system. A previous benchmark of the AWP-ODC code reached only 200 teraflops (trillions of calculations per second) of sustained performance.

By delivering a significantly higher level of computational power, researchers can provide more accurate earthquake predictions with increased physical reality and resolution, with the potential of saving lives and minimizing property damage.

"This is an impressive achievement that has made petascale-level computing a reality for us, opening up some new and really interesting possibilities for earthquake research," said Thomas Jordan, director of SCEC, which has been collaborating with UC San Diego and SDSU researchers on this and other seismic research projects, such as the simulation of a magnitude 8.0 earthquake, the largest ever simulation to-date.

"Substantially faster and more energy-efficient earthquake codes are urgently needed for improved seismic hazard evaluation," said Cui, citing the recent destructive earthquakes in China, Haiti, Chile, New Zealand, and Japan.

Next Steps

While the GPU-based AWP-ODC code is already in research use, further enhancements are being planned for use on hybrid heterogeneous architectures such as Titan and Blue Waters.

"One goal going forward is to use this code to calculate an improved probabilistic seismic hazard forecast for the California region under a collaborative effort coordinated by SCEC," said Cui. "Our ultimate goal is to support development of a CyberShake model that can assimilate information during earthquake cascades so we can improve our operational forecasting and early warning systems."

CyberShake is a SCEC project focused on developing new approaches to performing seismic hazard analyses using 3D waveform modeling. The GPU-based code has potential to save hundreds of millions of CPU-hours required to complete statewide seismic hazard map calculations in planning.

Additional members on the UC San Diego research team include Jun Zhou and Efecan Poyraz, graduate students with the university's Department of Electrical and Computer Engineering (Zhou devoted his graduate research to this development work); SDSC researcher Dong Ju Choi; and Clark C. Guest, an associate professor of electrical and computer engineering at UC San Diego's Jacobs School of Engineering.

Compute resources used for this research are supported by XSEDE under NSF grant number OCI-1053575, while additional funding for research was provided through XSEDE's Extended Collaborative Support Service (ECSS) program.

"ECSS exists for exactly this reason, to help a research team make significant performance gains and take their simulations to the next level," said Nancy Wilkins-Diehr, co-director of the ECSS program and SDSC's associate director. "We're very pleased with the results we were able to achieve for PI Thomas Jordan and his team. ECSS projects are typically conducted over several months to up to one year. This type of targeted support may be requested by anyone through the XSEDE allocations process."


Additional funding came from the UC San Diego Graduate Program, Petascale Research in Earthquake System Science on Blue Waters PRAC (Petascale Computing Resource Allocation) under NSF award number OCI-0832698, and SCEC's core program of 2012. This research also received support under the following NSF Geoinformatics awards: Community Computational Platforms for Developing Three-Dimensional Models of Earth Structure (EAR-1226343) and Software Environment for Integrated Seismic Modeling (OCI-1148493). Certain computing resources, including Titan, were also provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725.

Researchers acknowledge the following individuals for their contributions: Kim Olsen and Steven Day of SDSU; Amit Chourasia of SDSC (visualizations); Jeffrey Vetter of ORNL and his Keeneland team; D.K. Panda of Ohio State University and his MVAPICH compiler team; Carl Ponder and Roy Kim of NVIDIA; and Philip Maechling and Thomas Jordan of SCEC.

Jan Zverina | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>