Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Storm Amanda Gets Bisected and Animated by NASA's CloudSat

30.05.2014

Tropical Storm Amanda continues to weaken in the eastern Pacific from dry air and wind shear. NASA's CloudSat satellite captured a view of the storm from the side revealing heavy precipitation when the storm was the most powerful May Eastern Pacific on record.

NASA's CloudSat satellite flew over Hurricane Amanda in the east Pacific on May 25, 2014 at 2100 UTC (5 p.m. EDT) and was about 40 km (24.8 miles) outside of the center of the storm.


This animation shows how Cloudsat was able to gather the information seen in the image above.

Image Credit: Colorado State University

Hurricane Amanda contained estimated maximum winds of 130 knots (150 mph/240 kph) and minimum pressure of 935 millibars at the time of this overpass. CloudSat passed over the eastern section of the storm, after it reached peak intensity earlier in the day. On May 25 Hurricane Amanda had become the strongest May hurricane on record for the Eastern Pacific basin.

CloudSat data showed a deep area of moderate to heavy-moderate precipitation below the freezing level (where precipitation changes from frozen to liquid). Cloudsat also showed a deep anvil cloud deck that extended northward with smaller cumulus clouds detectable beneath.

... more about:
»CloudSat »Colorado »Depression »EDT »Hurricane »NHC »Pacific »Space »UTC »clouds »satellite

Four days later, Amanda quickly weakened as a result of dry air moving into the system and wind shear.

National Hurricane Center (NHC) forecaster Brennan noted at 5 a.m. EDT on May 29 in the NHC Discussion that "Amanda has come unglued during the past few hours, with the remaining deep convection now located more than 2 degrees to the northeast of the low-level center. This weakening appears to be due to the usually potent combination of vertical wind shear and mid/upper-level dry air advecting (moving) over the cyclone."

By 11 a.m. EDT (8 a.m. PDT) on May 29, the National Hurricane Center (NHC) reported that Amanda weakened to a depression. The center of Tropical Depression Amanda was located near latitude 16.3 north and longitude 110.0 west, about 455 miles (735 km) south of the southern tip of Baja California, Mexico. Because Amanda was so far from land, there were no warnings or watches in effect.

Amanda's maximum sustained winds have decreased to near 35 mph (55Kph) with higher gusts. The NHC discussion at 11 a.m. EDT noted that Amanda's center had become increasingly elongated and diffuse. The estimated minimum central pressure is 1006 millibars.

The depression was moving toward the east near 7 mph (11 kph) and NHC expects a slower eastward or east-northeastward motion during the next day or so. The NHC expects Amanda to become a remnant low in about a day.

Text credit:  Natalie D. Tourville/Rob Gutro
Colorado State University/NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!

Further reports about: CloudSat Colorado Depression EDT Hurricane NHC Pacific Space UTC clouds satellite

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>