Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tornadoes occurring earlier in “Tornado Alley”

17.09.2014

Peak tornado activity in the central and southern Great Plains of the United States is occurring up to two weeks earlier than it did half a century ago, according to a new study whose findings could help states in “Tornado Alley” better prepare for these violent storms.

Tornado records from Nebraska, Kansas, Oklahoma, and northern Texas – an area of high tornado activity dubbed “Tornado Alley” — show that peak tornado activity is starting and ending earlier than it did 60 years ago.


A supercell storm, known to produce violent tornadoes, forms in Courtney, Oklahoma in April 2014. A new study shows that peak tornado activity is occurring nearly two weeks earlier in Oklahoma, Kansas, and northern Texas, according to a new study published in Geophysical Research Letters.

Credit: Kelly DeLay/Flickr

Peak tornado activity, which occurs in the region from early May to early July, has moved an average of seven days earlier in the year over the past six decades. The study’s authors observed the shift in tornado activity for all categories of tornadoes that occurred in the region from 1954 to 2009.

The research team published its findings last week in Geophysical Research Letters, a journal of the American Geophysical Union.

Additional, more-selective analyses by the authors show that for some states in the region and for stronger tornadoes the season advances an average of 14 days compared to 1954.

“If we take Nebraska out [of the data], it is nearly a two-week shift earlier,” noted John Long, a research scientist in the Department of Land Resources and Environmental Sciences at Montana State University in Bozeman, Montana, and lead author of the new paper. For tornadoes rated above F0, the lowest rung on the original Fujita scale of tornado strength, the shift is also close to 14 days, according to a preliminary analysis by Long and his colleagues that’s not included in the new paper.

F1 tornadoes have winds between 117 and 180 kilometers per hour (73 and 112 miles per hour), while the strongest tornadoes, F5, have winds between 420 and 511 kilometers per hour (261 and 318 miles per hour), according to the original Fujita scale. Although the Fujita scale was updated in 2007, Long and his colleagues stayed with the original Fujita scale because most data in this new study originates from prior years.

The new research does not attribute the shift in tornado activity in the region to any single cause. However, the earlier tornado activity seen in the study is in-line with what could be expected in a warmer climate, the study’s authors said.

The new research could help residents in the region be better prepared for severe weather, said Long. About 1,300 tornadoes hit the U.S. every year, killing an average of 60 people, according to the National Weather Service’s Storm Prediction Center. This year, the majority of the 309 tornadoes that have hit the U.S. occurred in May and the deadliest storms were in April, according to the Storm Prediction Center.

“From a public safety perspective, if this trend (of an earlier tornado season) is indeed occurring, then people need to begin preparing for severe weather earlier in the year,” said Greg Carbin, the warning coordination meteorologist at the Storm Prediction Center in Norman, Oklahoma, who was not involved in the new study.

The new research analyzed National Weather Service tornado data for Tornado Alley from 1954 to 2009. The authors broke the data into ten-year time frames and analyzed how the dates of peak tornado activity changed over time.

The analysis showed the date of peak tornado activity in the region moved earlier at a rate of 1.55 days per decade over the time period studied. In the heart of Tornado Alley, an area with the highest density of tornadoes, peak activity shifted by seven days: from May 26 in the 1950s to May 19 in the early 2000s.

Although there is a consistent movement in the region toward earlier tornado activity, it is difficult to pinpoint a cause, said Paul Stoy, assistant professor in the Department of Land Resources and Environmental Sciences at MSU and co-author of the new study. Records of tornado activity in the U.S. only date back to the 1950s, making it difficult to study changing trends in tornado activity. Furthermore, tornadoes can be influenced by many regional factors, including topography of the land and areas where cooler air meets warm, subtropical air, making it difficult to attribute the shift in the tornado season to any one factor, he said.

Carbin, of the Storm Prediction Center, said a warmer climate might play a role. “If winters are not as cold, or if spring times are warmer, the location of the jet stream is most likely displaced north of where it has been in the past,” he said. This would cause tornado activity to shift earlier in the year, like what is seen in the new study, Carbin said.

The study has revealed a connection between one global climate pattern and tornado activity, specifically in the state of Oklahoma. When El Niño conditions occur between January and April, peak tornado activity in Oklahoma occurs earlier in the spring, the researchers report. El Niño, an oscillation of the ocean-atmosphere system that is associated with warm ocean waters in the Pacific Ocean, changes the air surface pressure and atmospheric circulation.

“The relationship we do see in Oklahoma is a light but significant connection to El Niño,” Stoy said. “This makes one suspect that if global climate change is changing these larger circulations, then there is a connection between a global [variability] and tornado activity.”

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists

A  PDF copy of this article can be downloaded at no cost by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061385/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Peak tornado activity is occurring earlier in the heart of ‘Tornado Alley’”

Authors:
John A. Long and Paul C. Stoy: Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA.

Contact information for the authors:
John Long: +1 (406) 994-5073; john.long5@msu.montana.edu

Paul Stoy: paul.stoy@montana.edu

AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Montana State University Contact:
Evelyn Boswell
+1 (406) 994-5135
evelynb@montana.edu

Peter Weiss | American Geophysical Union
Further information:
http://news.agu.org/press-release/tornadoes-occurring-earlier-in-tornado-alley/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>