Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tornadoes occurring earlier in “Tornado Alley”

17.09.2014

Peak tornado activity in the central and southern Great Plains of the United States is occurring up to two weeks earlier than it did half a century ago, according to a new study whose findings could help states in “Tornado Alley” better prepare for these violent storms.

Tornado records from Nebraska, Kansas, Oklahoma, and northern Texas – an area of high tornado activity dubbed “Tornado Alley” — show that peak tornado activity is starting and ending earlier than it did 60 years ago.


A supercell storm, known to produce violent tornadoes, forms in Courtney, Oklahoma in April 2014. A new study shows that peak tornado activity is occurring nearly two weeks earlier in Oklahoma, Kansas, and northern Texas, according to a new study published in Geophysical Research Letters.

Credit: Kelly DeLay/Flickr

Peak tornado activity, which occurs in the region from early May to early July, has moved an average of seven days earlier in the year over the past six decades. The study’s authors observed the shift in tornado activity for all categories of tornadoes that occurred in the region from 1954 to 2009.

The research team published its findings last week in Geophysical Research Letters, a journal of the American Geophysical Union.

Additional, more-selective analyses by the authors show that for some states in the region and for stronger tornadoes the season advances an average of 14 days compared to 1954.

“If we take Nebraska out [of the data], it is nearly a two-week shift earlier,” noted John Long, a research scientist in the Department of Land Resources and Environmental Sciences at Montana State University in Bozeman, Montana, and lead author of the new paper. For tornadoes rated above F0, the lowest rung on the original Fujita scale of tornado strength, the shift is also close to 14 days, according to a preliminary analysis by Long and his colleagues that’s not included in the new paper.

F1 tornadoes have winds between 117 and 180 kilometers per hour (73 and 112 miles per hour), while the strongest tornadoes, F5, have winds between 420 and 511 kilometers per hour (261 and 318 miles per hour), according to the original Fujita scale. Although the Fujita scale was updated in 2007, Long and his colleagues stayed with the original Fujita scale because most data in this new study originates from prior years.

The new research does not attribute the shift in tornado activity in the region to any single cause. However, the earlier tornado activity seen in the study is in-line with what could be expected in a warmer climate, the study’s authors said.

The new research could help residents in the region be better prepared for severe weather, said Long. About 1,300 tornadoes hit the U.S. every year, killing an average of 60 people, according to the National Weather Service’s Storm Prediction Center. This year, the majority of the 309 tornadoes that have hit the U.S. occurred in May and the deadliest storms were in April, according to the Storm Prediction Center.

“From a public safety perspective, if this trend (of an earlier tornado season) is indeed occurring, then people need to begin preparing for severe weather earlier in the year,” said Greg Carbin, the warning coordination meteorologist at the Storm Prediction Center in Norman, Oklahoma, who was not involved in the new study.

The new research analyzed National Weather Service tornado data for Tornado Alley from 1954 to 2009. The authors broke the data into ten-year time frames and analyzed how the dates of peak tornado activity changed over time.

The analysis showed the date of peak tornado activity in the region moved earlier at a rate of 1.55 days per decade over the time period studied. In the heart of Tornado Alley, an area with the highest density of tornadoes, peak activity shifted by seven days: from May 26 in the 1950s to May 19 in the early 2000s.

Although there is a consistent movement in the region toward earlier tornado activity, it is difficult to pinpoint a cause, said Paul Stoy, assistant professor in the Department of Land Resources and Environmental Sciences at MSU and co-author of the new study. Records of tornado activity in the U.S. only date back to the 1950s, making it difficult to study changing trends in tornado activity. Furthermore, tornadoes can be influenced by many regional factors, including topography of the land and areas where cooler air meets warm, subtropical air, making it difficult to attribute the shift in the tornado season to any one factor, he said.

Carbin, of the Storm Prediction Center, said a warmer climate might play a role. “If winters are not as cold, or if spring times are warmer, the location of the jet stream is most likely displaced north of where it has been in the past,” he said. This would cause tornado activity to shift earlier in the year, like what is seen in the new study, Carbin said.

The study has revealed a connection between one global climate pattern and tornado activity, specifically in the state of Oklahoma. When El Niño conditions occur between January and April, peak tornado activity in Oklahoma occurs earlier in the spring, the researchers report. El Niño, an oscillation of the ocean-atmosphere system that is associated with warm ocean waters in the Pacific Ocean, changes the air surface pressure and atmospheric circulation.

“The relationship we do see in Oklahoma is a light but significant connection to El Niño,” Stoy said. “This makes one suspect that if global climate change is changing these larger circulations, then there is a connection between a global [variability] and tornado activity.”

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Notes for Journalists

A  PDF copy of this article can be downloaded at no cost by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061385/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Peak tornado activity is occurring earlier in the heart of ‘Tornado Alley’”

Authors:
John A. Long and Paul C. Stoy: Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA.

Contact information for the authors:
John Long: +1 (406) 994-5073; john.long5@msu.montana.edu

Paul Stoy: paul.stoy@montana.edu

AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

Montana State University Contact:
Evelyn Boswell
+1 (406) 994-5135
evelynb@montana.edu

Peter Weiss | American Geophysical Union
Further information:
http://news.agu.org/press-release/tornadoes-occurring-earlier-in-tornado-alley/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>