Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooth serves as evidence of 220 million-year-old attack

29.09.2014

A tooth challenges beliefs about how ancient reptiles lived

At the beginning of the age of dinosaurs, gigantic reptiles—distant relatives of modern crocodiles—ruled the earth. Some lived on land and others in water and it was thought they didn't much interact. But a tooth found by a University of Tennessee, Knoxville, researcher in the thigh of one of these ancient animals is challenging this belief.


This image shows teeth from phytosaurs, a reptile from the Triassic Period, that lived about 210 million years ago in the western United States, in the hand of Virginia Tech research scientist Michelle Stocker. The gray tooth was 3-D printed from CT scans after being digitally extracted from the thigh bone of a large predatory reptile called a rauisuchid.

Credit: Michelle Stocker

Stephanie Drumheller, an earth and planetary sciences lecturer, and her Virginia Tech colleagues Michelle Stocker and Sterling Nesbitt examined 220-million-year-old bite marks in the thigh bones of an old reptile and found evidence that two predators at the top of their respective food chains interacted—with the smaller potentially having eaten the larger animal.

The evidence? A tooth of a semi-aquatic phytosaur lodged in the thigh bone of a terrestrial rauisuchid. The tooth lay broken off and buried about two inches deep in bone and then healed over, indicating that the rauisuchid, a creature about 25 feet long and 4 feet high at the hip, survived the initial attack.

"To find a phytosaur tooth in the bone of a rauisuchid is very surprising. These rauisuchids were the largest predators in their environments. You might expect them to be the top predators as well, but here we have evidence of phytosaurs, who were smaller, semi-aquatic animals, potentially targeting and eating these big carnivores," said Drumheller.

To study the tooth without destroying the bone, the team partnered computed tomographic (CT) data with a 3D printer and printed copies of the tooth. This, along with an examination of the bite marks, revealed a story of multiple struggles. The team found tissue surrounding bite marks illustrating that the rauisuchid was attacked twice and survived. Evidence of crushing, impact and flesh-stripping but no healing showed the team that the animal later died in another attack.

The tooth that was left behind revealed who was guilty of the attacks.

"Finding teeth embedded directly in fossil bone is very, very rare," said Drumheller of the bone obtained from the University of California Museum of Paleontology in Berkeley. "This is the first time it's been identified among phytosaurs, and it gives us a smoking gun for interpreting this set of bite marks."

The findings also suggest previous distinctions between water- and land-based food chains of this time, the Late Triassic Period, might be built upon mistaken assumptions made from fossil remains.

"This research will call for us to go back and look at some of the assumptions we've had in regard to the Late Triassic ecosystems," Stocker said. "The aquatic and terrestrial distinctions made were oversimplified, and I think we've made a case that the two spheres were intimately connected."

The research also calls into question the importance of size in a fight.

"Both of the femora we examined came from some of the physically largest carnivorous species present at both locations. Yet they were targeted by other members of the region—specifically phytosaurs," said Drumheller. "Thus, size cannot be the only factor in determining who is at the top of the food chain."

###

The research is published online in the German scientific journal Naturwissenschaften, The Science of Nature.

Whitney Heins | Eurek Alert!

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>