Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The warmer the higher: sea-level rise from Filchner-Ronne ice in Antarctica

06.10.2015

The more ice is melted of the Antarctic Filchner-Ronne shelf, the more ice flows into the ocean and the more the region contributes to global sea-level rise. While this might seem obvious, it is no matter of course for the huge ice masses of Antarctica: parts of the ice continent are characterized by instabilities that, once triggered, can lead to persistent ice discharge into the ocean even without a further increase of warming - resulting in unstoppable long-term sea-level rise. In the Filchner-Ronne region however, ice-loss will likely not show such behavior, scientists from the Potsdam Institute for Climate Impact Research now found.

Published in Nature Climate Change, their study shows that in this area the ice flow into the ocean increases just constantly with the heat provided by the ocean over time.


The Filchner-Ronne ice shelf is the second largest ice shelf in Antarctica. Photo: NASA Visible Earth

“While for other parts of Antarctica unstoppable long-term ice loss might be provoked by a single warming pulse, caused by nature itself or human action, ice loss in the Filchner-Ronne region increases directly with ocean warming,” lead author Matthias Mengel explains. “This is good news, because it is in our hands to determine how much the region contributes to the global sea-level rise.” Ocean warming results from greenhouse gases in the atmosphere, produced by humankind’s unabated burning of coal, oil and gas. Importantly, however, the oceans might not respond linearly to atmospheric warming, and not in the same way in all parts of the world. This includes the risk that ocean temperatures first lag behind, and then rise rapidly.

“Good news” – yet only compared to other parts of the ice continent

The Filchner-Ronne shelf covers an area bigger than Germany; its grounded-ice tributaries store water equivalent to a total of several meters of sea-level rise. “Our calculations show that this relatively small part of the Antarctic ice sheet within just 200 years of unabated climate change could contribute up to 40 centimeters to global sea-level rise,” says Mengel. “This kind of sea-level rise alone could already be enough to bring coastal cities like Hamburg into serious difficulties.”

“At present, most Antarctic ice shelves are surrounded by cold water masses near the freezing point,” co-author Anders Levermann says. “The topography around the ice continent acts as a barrier for heat and salt exchange with the northern warmer and saltier water masses, creating a cold water wall around the continent”. Projections of the breakdown of this front in ocean simulations for the Filchner-Ronne region under atmospheric warming raised concerns that such ocean instability might lead to unstoppable future ice loss also from this part of Antarctica, as is projected to occur in the Wilkes Basin region, for instance. “We found that this is not the case for the Filchner-Ronne shelf – which luckily means that we can still very well limit the ice loss in this area by limiting greenhouse gas emissions.”

Different mechanisms in different regions

Sea-level rise poses a challenge to coastal regions worldwide. While today sea-level rise is mainly caused by thermal expansion of the warming oceans, and by the melting of mountain glaciers, the major contributors to long-term future sea-level rise are expected to be Greenland and Antarctica with their vast ice sheets. The causes of ice loss differ greatly between the two. While on Greenland ice melting at the surface plays a large role, the Antarctic ice sheet loses almost all its ice through ice flow into the ocean. The simulation of the Antarctic ice flow is complex because the flow can become unstable. Ice shelves, the floating extensions of the ice sheet, can act as a break to the ice flow and inhibit instability. Warming oceans around Antarctica that melt the ice shelves therefore increase the risk of high sea-level rise.

The Parallel Ice Sheet Model, as used by the authors, resolves unstable grounding line retreat and simulates the flow of both the ice sheet and the ice shelves. It can therefore help to answer urgent questions as to the extent of Antarctica’s sea-level risks.

“It is more difficult to determine the risk that comes with global warming in parts of Antarctica that are considered unstable, and less difficult for the Filchner-Ronne region that responds linearly to global warming,” concludes Levermann. “One thing is clear: the more warming we cause by burning coal, gas and oil, the more expensive it will be for coastal regions to adapt.”

Article: Mengel, M., Feldmann, J., Levermann, A. (2015): Linear sea-level response of Antarctic tributaries to strong projected ocean warming underneath the Filchner-Ronne ice shelf. Nature Climate Change (Advance Online Publication) [DOI: 10.1038/nclimate2808]

Link to the article once it is published: http://dx.doi.org/10.1038/nclimate2808

Link to the previous study on the Wilkes Bassin, "Uncorking East Antarctica yields unstoppable sea-level rise":
https://www.pik-potsdam.de/news/press-releases/archive/2014/uncorking-east-antar...

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>