Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teamwork: IBEX and TWINS observe a solar storm

13.04.2012
On April 5, 2010, the sun spewed a two million-mile-per-hour stream of charged particles toward the invisible magnetic fields surrounding Earth, known as the magnetosphere.

As the particles interacted with the magnetic fields, the incoming stream of energy caused stormy conditions near Earth. Some scientists believe that it was this solar storm that interfered with commands to a communications satellite, Galaxy-15, which subsequently foundered and drifted, taking almost a year to return to its station.


The highly elliptical orbit of TWINS offers a good view of the ring current -- a hula hoop of charged particles that encircles Earth. Credit: J. Goldstein/SWRI

To better understand how to protect satellites from intense bursts of energy from the sun, scientists study the full chain of space weather events from first eruptions on the sun to how the magnetic fields around Earth compress and change shape in response. During the April 5 storm, two NASA Heliophysics System Observatory missions – the Interstellar Boundary Explorer (IBEX) and two spacecraft called the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) – were perfectly positioned to view the storm from complementary viewpoints.

The three sets of instruments have been used together to paint a more complete picture of what happens during a solar storm, from initial impact of solar energy through to the particles that ultimately slide down into Earth's atmosphere near the poles. These results were published online on March 27, 2012 in the Journal of Geophysical Research.

"One spacecraft can only take recurring measurements along its own flight path," says Natalia Buzulukova, one of the authors on this paper and a geospace scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. and at the University of Maryland in College Park. "But this is not always enough to understand the whole event. With several spacecraft at once we have a unique opportunity to observe more of the magnetosphere simultaneously."

The two TWINS spacecraft and IBEX orbit Earth in very different paths. TWINS travels along a highly elliptical orbit around Earth through the magnetosphere. IBEX, too, circles Earth, but generally lies outside the magnetosphere allowing it to map the very edges of the solar system. Together, they offer glimpses from the inside and outside of the magnetosphere, including the side that faces the sun, the side that extends long away from the sun – the magnetotail -- and an electric current that sometimes appears around Earth like a giant hula hoop called the ring current.

"This imaging gives us a better global picture of the evolution of the magnetosphere — especially of the processes by which the sun injects energy into the magnetosphere — than has ever been available before," says David McComas, a space scientist at Southwest Research Institute in San Antonio, Texas, who is first author on this paper and also the principal investigator for the IBEX and TWINS missions.

IBEX and TWINS both have instruments to study what's called energetic neutral atoms or ENAs. These fast moving particles are produced during particle collisions between charged and neutral particles. Crucially, they move in a straight line from their point of origin, unmolested by the magnetic fields that would constrain charged particles in their travels. Thus they can provide an "image" to decode and map out the structure of a far away charged particle system, such as occurs in the magnetosphere and ring current.

The ENA images from IBEX were taken from a distance of around 180,000 miles above the magnetosphere. They show that the magnetosphere immediately compressed under the impact of the charged particles from the solar wind. Minutes later, one of the TWINS spacecraft observed changes in the inner magnetosphere from a much-closer 28,000 miles: the ring current began to trap incoming charged particles. About 15 minutes after impact, these trapped particles gyrated down magnetic field lines into Earth's atmosphere, a process known as "precipitation." The time delay between the onset of trapped particles and losing them to the atmosphere points to a fairly slow set of internal processes carrying the region from storm impact through compression to precipitation.

"The solar storm directly causes the ring current activity, but the other effects, including particles precipitating down toward the atmosphere, are triggered by something called a substorm, a process that releases energy form the magnetotail," says Buzulukova. "These two triggers have different physics and different manifestations. This analysis opens the door to understanding how these different effects are connected."

The paper also paves the way to more sophisticated modeling techniques of the entire magnetosphere. To produce the new images, the team developed a series of techniques to process the imaging data, including improved procedures for differential background subtraction, "statistical smoothing" of images, and comprehensive modeling of the ring current.

"Understanding how solar events develop and impact satellites is like understanding the processes that cause extreme weather events on Earth to develop and destroy homes and businesses," says McComas. "Engineers use weather data to know where and how they need to strengthen buildings against various types of weather threats. The more we know about the processes occurring in space, the better engineers can design satellites to protect them from space weather hazards, which is increasingly important in our highly technological world."

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorer space missions; TWINS is an Explorer Mission of Opportunity. Southwest Research Institute in San Antonio leads both projects with teams of national and international partners. NASA's Goddard Space Flight Center manages the Explorers Program for NASA's Science Mission Directorate in Washington, DC.

Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/sunearth/news/ibex-twins.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>