Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a Robotic Geologist to Mars

06.08.2012
Mars rover Curiosity is the closest thing to a real geologist landing on Mars.

It will explore the composition of rocks with the help of the world's largest reference database of minerals, housed at the University of Arizona in Tucson.


In this artist's concept of Curiosity, the Mars rover examines a rock with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. (Image: NASA/JPL-Caltech)

On Aug. 5, at about 10:30 p.m., an already busy summer will kick into overdrive for University of Arizona geosciences professor Bob Downs and one of his graduate students, Shaunna Morrison. At that time ­ provided everything goes as planned ­ Curiosity, the most sophisticated exploration vehicle ever sent to another planet, will parachute toward the Martian surface faster than the speed of sound after a nine-month journey through space. And as soon as it sinks its six wheels into the red dust, the two scientists specializing in mineralogy will have not one, but two planets to deal with.

As ³primary data downlink leaders² designated by NASA, Downs and Morrison are part of a team of scientists tasked with the identification of rocks that Curiosity will encounter during its two-year expedition across the floor of Gale Crater near the Martian equator.

³The Curiosity rover is the next best thing to sending a geologist to Mars,² said Downs. ³It carries all the necessary equipment that we would use here on Earth when we study rocks and minerals.²

NASA¹s latest in a series of Mars rovers is also the biggest and best of the bunch. Two times larger and five times heavier than the Mars Exploration Rovers Spirit and Opportunity, Curiosity rivals a small SUV in size and carries 15 times the weight of the scientific instruments that Spirit and Opportunity have. Mars Science Laboratory's Curiosity was designed to survey the Martian landscape and examine rocks up close. It is the first rover lacking solar panels, which suffered from frequent accumulations of dust.

Instead, a dustbin-sized nuclear generator mounted to the rover¹s back powers the vehicle and its scientific payload. The heat generated by the radioactive decay of non-weapons-grade plutonium-238 is turned into electrical power supplying the rover¹s batteries day and night.

Curiosity is the first rover sent to another planet capable of not only navigating the terrain, but scooping up and analyzing rock and dust samples. Its mission is to venture up to 12 miles from its landing site and explore the area for past or present conditions favorable for life, and conditions capable of preserving a record of life. The rover is expected to collect, grind and analyze about 70 samples of soil and rock.

Downs and Morrison are members of the science team in charge of CheMin, one of 10 scientific instruments mounted on the rover. CheMin, short for chemistry and mineralogy, is the first X-ray diffractometer ever sent to space, said Downs.

³It works by shooting X-rays at a rock sample, which interact with the electrons in the rock and send back signals that are like fingerprints,² he explained. ³It's the standard for identifying minerals, just what you would do in a lab here on Earth.²

Once CheMin has finished analyzing a rock sample, which can take up to 10 hours, Curiosity will send the data to Earth, where Downs and Morrison will be among those who gather the data and interpret them.

Downs has accumulated the largest database of minerals in the world. About
5,000 small vials, neatly labeled and stored in a cabinet in his lab, represent about 2,200 species of the approximate 4,600 known Earth minerals, more than any other lab in the world. The scientists will use that database to figure out what minerals make up the sample that Curiosity scooped up millions of miles away based on its X-ray ³fingerprint,² which is unique to each mineral.

³The beauty of X-ray diffraction is that even if we get a sample of an unknown mineral, we can figure out its exact chemical composition and structure.²

The technique was not an option on previous, solar-powered rovers because it requires high energies of about 45,000 volts.

Another instrument, ChemCam, short for chemistry through the camera, combines a camera with a mass spectrometer to analyze rocks from a distance.

In Star-Wars-like fashion, ChemCam, mounted onto the rover¹s mast, will shoot a laser beam at a rock up to 23 feet away, vaporize a small amount of it and a spectrometer will analyze the rock¹s chemical composition based on the pattern of the reflected light. The idea is to sample the terrain from a distance and get a rough overview of its composition before sending the rover for a close investigation. In addition, the rover is equipped with a magnifying glass and a digital camera providing real-color, close-up views of rocks.

³That¹s the first thing a geologist would do here on Earth,² Downs said.
³Take your hand lens to the rock and ask, what are we looking at here? If it¹s anything of interest, we would focus on it, grab the stuff and really figure out what it is.²

Curiosity¹s landing site was carefully selected to yield as much information as possible about Mars¹ geologic past. Images and spectroscopic analyses taken from an orbit around Mars by the UA-operated HiRISE camera have identified minerals at the bottom of Gale Crater, such as clays and sulfates, which require liquid water to form.

Of special interest is Mount Sharp, a central mound rising about 3.4 miles from the crater bottom. The rock layering in Mount Sharp suggests it is the surviving remnant of an extensive sequence of sediments preserving clues to the geologic past of Mars, waiting to be deciphered.

³It turns out that near the place we're going to land, there are some boulders that may have rolled down the mountain,² Downs said, ³so we might able to sample parts of the mountain without actually having to go up there.²

Morrison is especially fascinated by rare Earth minerals, a group of minerals comprising about 300 known species on Earth. Some of them are poorly understood, others are still waiting to be discovered and described scientifically.

Rare Earth minerals attract increasing interest from scientists and engineers because of their unique chemical properties. Some of them have strong magnetic properties, enabling engineers to build smaller electrical motors or tiny yet powerful speakers.

³Rare Earth minerals are heavily used in almost all our modern technology,² Morrison explained. ³iPods, TVs, LED screens, they all depend on those minerals.²

During Curiosity¹s mission, she hopes to be able to divide her time between her Earthly research and helping identify minerals on Mars.
Currently, she is involved in a study trying to characterize a previously unknown Rare Earth mineral.

Finding Rare Earth minerals on Mars would be a surprise to scientists because it is thought that in terms of its mineral evolution Mars never got quite as far as the Earth.

³Two-thirds of known minerals on Earth formed because of interactions among rocks, atmosphere and life,² Downs said. ³Mars may not have gone that far. We may find that it Œfroze¹ at an earlier stage so to speak.²

Asked if he expected to find any mineral on Mars that does not occur on Earth, he paused, then said, ³I don't know. Probably not, but I hope there is something new. Just for the challenge, you know?²
Science Contact:
Bob Downs
Department of Geosciences
The University of Arizona
520-626-8092
rdowns@u.arizona.edu
Media Contact:
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | The University of Arizona
Further information:
http://www.arizona.edu
http://uanews.org/story/taking-robotic-geologist-mars

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>