Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taking the 'pulse' of volcanoes using satellite images

InSAR helps to show 'inflation' in advance of volcanic eruptions in Indonesia

A new study by scientists at the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science uses Interferometric Synthetic Aperture Radar (InSAR) data to investigate deformation prior to the eruption of active volcanoes in Indonesia's west Sunda arc.

This image shows averaged 2006-2009 ground velocity map of the west Sunda volcanic region from the Japanese Space Agency's ALOS satellite. Positive velocity (red colors) represents movement towards the satellite (e.g. uplift) and negative velocity (blue colors) movement away from the satellite (e.g. subsidence). Locations of volcanoes are marked by black triangles, historically active volcanoes by red triangles. Insets show six inflating volcanoes.

Credit: Estelle Chaussard, University of Miami

Led by geophysicist Estelle Chaussard and UM Professor Falk Amelung, the study uncovered evidence that several volcanoes did in fact 'inflate' prior to eruptions due to the rise of magma. The fact that such deformation could be detected by satellite is a major step forward in volcanology; it is the first unambiguous evidence that remotely detected ground deformation could help to forecast eruptions at volcanoes.

"Surveying entire volcanic regions using satellite data is of primary importance to the detection of ground deformation prior to the onset of eruptions. If volcanic inflation is observed, it can help us to predict where the next eruption may occur. Moreover, in regions like Indonesia, where volcanoes are prevalent and pose a threat to millions of people, and where ground-based monitoring is sparse, remote sensing via satellite could become a major forecasting tool," said Chaussard.

Analyzing more than 800 InSAR images from the Japanese Space Exploration Agency's ALOS satellite, the team surveyed 79 volcanoes in Indonesia between 2006 and 2009. They detected deformation at six volcanic centers, three of which erupted after the observation period, confirming that inflation is a common precursor of volcanic eruptions at west Sunda volcanoes.

"The notion of detecting deformation prior to a volcanic eruption has been around for a while," said Amelung, who has been studying active volcanoes for 15 years. "Because this region is so volcanically active, our use of InSAR has been very successful. We now have a tool that can tell us where eruptions are more likely to occur."

The team will now study other parts of Indonesia and then in the Philippines, also prone to volcanic activity. They will use data from the Japanese Space Agency's ALOS-2 which will be launched next year.

"The monitoring of changes to the Earth's surface helps us to better predict the onset of volcanic activity, which can have devastating impacts on human life," said Amelung. "Like with earthquakes and tsunamis, however, we cannot predict activity with certainty, but we hope that new tools like satellite remote sensing will help us to gather critical information in near real-time so we can anticipate the risk of eruptions and deploy resources in a timely manner."

This study also reveals that there are regional trends in depths of magma storage. Indonesian volcanoes have magma reservoirs at shallow depths probably due to the tectonic setting of the region, which account for the way the region is deforming. If a volcanic chamber is located close to the surface it is usually associated with a higher risk for significant eruption, thus these observations play a major role in volcanic hazard assessment.

The article entitled "Precursory inflation of shallow magma revervoirs at west Sunda volcanoes detected by InSAR" authored by Chaussard and Amelung appears in Geophysical Research Letters. Support was provided by grants from the National Aeronautics and space Administration (NASA) and the National Science Foundation (NNX09AK72G and EAR-0810214.) ALOS-PALSAR imagery used in the study is copyrighted by the Japanese Space Agency (JAXA).

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit

Barbra Gonzalez | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>