Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Submarine canyons a source of marine invertebrate diversity, abundance

28.08.2013
Submarine canyons play an important role in maintaining high levels of biodiversity of small invertebrates in the seafloor sediments of the main and northwestern Hawaiian Islands, according to research from the University of Hawai‘i at Mânoa.

What’s more, scientists have used this data to draw new connections between the levels of faunal diversity and the heterogeneity of submarine canyon landscapes at various spatial scales.


Researchers sampled diversity in Hawaii's submarine canyons, including these off Kaneohe Bay.

“Submarine canyons encompass myriad habitat types,” said Fabio C. De Leo, a doctoral graduate from UH Mânoa’s department of oceanography and the lead author on a new paper that was recently published in the scientific journal Deep Sea Research Part II. “This heterogeneity at the landscape-scale helps to enhance local biodiversity in canyon seafloor sediments.”

De Leo and colleagues, including oceanography professor Craig Smith, the study’s principal investigator (PI), conducted 34 submersible dives into six underwater canyons and their nearby slopes. Plumbing depths of up to 1,500 meters (~5,000 feet), their study area ranged across the Hawaiian archipelago, from the main Hawaiian Islands through Papahânaumokuâkea Marine National Monument in the Northwestern Hawaiian Islands.

The scientists evaluated and mapped landscape metrics of each canyon habitat, including the roughness of the seafloor and the steepness of canyon walls. At depths of 350, 650, and 1,000 meters in each location, they collected sediment core samples on the canyon floor. From these samples, they carefully sorted out and identified all of the marine organisms called macrobenthos—including worms, clams and shrimp-like crutaceans— that range in size from a millimeter to several centimeters. The scientists then correlated the macrobenthos species data with the landscape metrics.

The scientists found that submarine canyons can serve as species oases in the sea by channeling ocean currents, capturing and trapping sinking particles, funneling migrating animals, and generally providing a varied physical landscape. As a result, canyons promote high species diversity.

Researchers say this is the first study of its kind to thoroughly examine submarine canyons on island margins. The research effort had previously yielded reports of high species diversity of fish and large invertebrates, the so-called megafauna, in Hawai‘i’s submarine canyons. This corroboration led them to conclude: “Canyons may be particularly important in the Hawaiian islands, in part because they supply organic matter to the typically food-limited deep sea,” De Leo said. “When there’s more food, there’s more life.”

One thing that became evident from this study was that canyons near the main Hawaiian islands tended to collect and hold much more land-based organic matter than canyons in the Northwestern Hawaiian Islands. Materials such as branches, leaves, nuts and algae were abundant off Moloka‘i and O‘ahu, washed into the ocean by rain and carried out deep onto the canyon floors by ocean currents. These decomposing materials, scarcer in the islands of Nihoa and Maro Reef, serve as valuable food sources for the seafloor invertebrates, themselves a food source for other, larger fish.

The scientists have already documented four new species discovered during the course of their research dives, including three new types of crustaceans. Up to 60 percent of the species that taxonomists identified in the submarine canyon seafloor samples are only recognized to the family level.

“There is room for discovery of many more new species,” De Leo said. “The deep sea fauna of Hawai‘i is poorly sampled and poorly understood. Every time we go to sea and sample a new area, it’s likely that we’ll find a new species.”

This series of dives was conducted on the Pisces IV and Pisces V manned submersibles operated by the Hawai‘i Undersea Research Laboratory (HURL). The research was conducted in partnership with Hawai‘i Pacific University and the New Zealand National Institute of Water and Atmospheric Research.

Citation: Fabio C. De Leo, E.W. Vetter, C. R. Smith, A. R. Ashley, and M. McGranaghan. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands. Deep Sea Research Part II: Topical Studies in Oceanography. 11 July 2013.

Support: This study of submarine canyons off the main and Northwestern Hawaiian Islands was supported by grants from NOAA Office of Ocean Exploration and Research (PIs C.R. Smith and E.W. Vetter), HURL, and the Census of Diversity of Abyssal Marine Life (CeDAMar, PI C.R. Smith). F. De Leo was also funded through a 4-year Ph.D. fellowship from the Brazilian Ministry of Education (Capes) in partnership with Fulbright.

For more information, visit: http://www.soest.hawaii.edu/HURL/

Talia S. Ogliore | EurekAlert!
Further information:
http://manoa.hawaii.edu/news/article.php?aId=5928
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>