Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows maritime shipping makes hefty contribution to air pollution

02.03.2009
Commercial ships emit almost half as much particulate pollutants into the air globally as the total amount released by the world's cars, according to a new study led by the National Oceanic and Atmospheric Administration and the University of Colorado at Boulder.

The study is the first to provide a global estimate of maritime shipping's total contribution to air particle pollution based on direct emission measurements. The authors estimate ships emit about 1,100 tons of particle pollution globally each year.

Ship pollutants affect both global climate and the health of people living along coastlines, according to the study authors. The findings appear online the week of Feb. 23 in the Journal of Geophysical Research.

"Since more than 70 percent of shipping traffic takes place within 250 miles of the coastline, this is a significant health concern for coastal communities," said lead study author Daniel Lack, a researcher with the NOAA-supported CU Cooperative Institute for Research in Environmental Sciences based at NOAA's Earth System Research Laboratory in Boulder.

Earlier research by one of the study's co-authors, James Corbett of the University of Delaware, linked particle pollution to premature deaths among coastal populations.

Commercial ships emit both particle pollution and carbon dioxide, but they have opposite effects on the climate, said the researchers. The particles have a global cooling effect that is at least five times greater than the global warming effect from the ships' CO2 emissions.

The particles affect both climate and health, said the researchers. CO2 from ships makes up roughly 3 percent of all human-emitted CO2 and almost 30 percent of smog-forming nitrogen oxide gases.

During summer 2006, Lack and colleagues aboard the NOAA ship Ronald H. Brown analyzed the exhaust from over 200 commercial vessels, including cargo ships, tankers and cruise ships in the Gulf of Mexico, Galveston Bay and the Houston Ship Channel. The researchers also examined the chemistry of particles in ship exhaust to understand what makes ships such hefty polluters.

Ships emit sulfates, the same particles associated with diesel-engine cars and trucks and which have resulted in tighter regulations regarding on-road vehicle fuel standards, according to the research team. Sulfate emissions from ships vary with the concentration of sulfur in ship fuel, the authors found.

Globally, fuel sulfur content is capped under the International Convention for the Prevention of Pollution from Ships. As a result of the cap, some ships use "cleaner," low-sulfur fuels, while others continue to use the high-sulfur counterparts.

But sulfates make up just under half of shipping's total particle emissions, according to the NOAA-CU study. Organic pollutants and sooty, black carbon -- which make up the other half of emissions -- are not directly targeted by today's regulations. A 2008 study by Lack's team focused exclusively on soot.

Emissions of non-sulfate particles depend on the operating speed of the engine and the amount of lubricating oil needed to deal with wear and tear from burning less-refined fuels, according to the researchers. "Fortunately, engines burning 'cleaner,' low-sulfur fuels tend to require less complex lubricants," said Corbett. "So the sulfur fuel regulations have the indirect effect of reducing the organic particles emitted."

One surprising result of burning low-sulfur fuels was that while total particle emissions diminish, the time the remaining particles spend in the air appears to increase. It's while they're airborne that particles pose a risk to human health and affect climate, according to the study.

Lack and colleagues found that the organic and black carbon portion of ship exhaust is less likely to form cloud droplets. As a result, the particles remain suspended for longer periods of time before being washed to the ground through precipitation.

Daniel Lack | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>