Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows maritime shipping makes hefty contribution to air pollution

02.03.2009
Commercial ships emit almost half as much particulate pollutants into the air globally as the total amount released by the world's cars, according to a new study led by the National Oceanic and Atmospheric Administration and the University of Colorado at Boulder.

The study is the first to provide a global estimate of maritime shipping's total contribution to air particle pollution based on direct emission measurements. The authors estimate ships emit about 1,100 tons of particle pollution globally each year.

Ship pollutants affect both global climate and the health of people living along coastlines, according to the study authors. The findings appear online the week of Feb. 23 in the Journal of Geophysical Research.

"Since more than 70 percent of shipping traffic takes place within 250 miles of the coastline, this is a significant health concern for coastal communities," said lead study author Daniel Lack, a researcher with the NOAA-supported CU Cooperative Institute for Research in Environmental Sciences based at NOAA's Earth System Research Laboratory in Boulder.

Earlier research by one of the study's co-authors, James Corbett of the University of Delaware, linked particle pollution to premature deaths among coastal populations.

Commercial ships emit both particle pollution and carbon dioxide, but they have opposite effects on the climate, said the researchers. The particles have a global cooling effect that is at least five times greater than the global warming effect from the ships' CO2 emissions.

The particles affect both climate and health, said the researchers. CO2 from ships makes up roughly 3 percent of all human-emitted CO2 and almost 30 percent of smog-forming nitrogen oxide gases.

During summer 2006, Lack and colleagues aboard the NOAA ship Ronald H. Brown analyzed the exhaust from over 200 commercial vessels, including cargo ships, tankers and cruise ships in the Gulf of Mexico, Galveston Bay and the Houston Ship Channel. The researchers also examined the chemistry of particles in ship exhaust to understand what makes ships such hefty polluters.

Ships emit sulfates, the same particles associated with diesel-engine cars and trucks and which have resulted in tighter regulations regarding on-road vehicle fuel standards, according to the research team. Sulfate emissions from ships vary with the concentration of sulfur in ship fuel, the authors found.

Globally, fuel sulfur content is capped under the International Convention for the Prevention of Pollution from Ships. As a result of the cap, some ships use "cleaner," low-sulfur fuels, while others continue to use the high-sulfur counterparts.

But sulfates make up just under half of shipping's total particle emissions, according to the NOAA-CU study. Organic pollutants and sooty, black carbon -- which make up the other half of emissions -- are not directly targeted by today's regulations. A 2008 study by Lack's team focused exclusively on soot.

Emissions of non-sulfate particles depend on the operating speed of the engine and the amount of lubricating oil needed to deal with wear and tear from burning less-refined fuels, according to the researchers. "Fortunately, engines burning 'cleaner,' low-sulfur fuels tend to require less complex lubricants," said Corbett. "So the sulfur fuel regulations have the indirect effect of reducing the organic particles emitted."

One surprising result of burning low-sulfur fuels was that while total particle emissions diminish, the time the remaining particles spend in the air appears to increase. It's while they're airborne that particles pose a risk to human health and affect climate, according to the study.

Lack and colleagues found that the organic and black carbon portion of ship exhaust is less likely to form cloud droplets. As a result, the particles remain suspended for longer periods of time before being washed to the ground through precipitation.

Daniel Lack | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>