Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows maritime shipping makes hefty contribution to air pollution

02.03.2009
Commercial ships emit almost half as much particulate pollutants into the air globally as the total amount released by the world's cars, according to a new study led by the National Oceanic and Atmospheric Administration and the University of Colorado at Boulder.

The study is the first to provide a global estimate of maritime shipping's total contribution to air particle pollution based on direct emission measurements. The authors estimate ships emit about 1,100 tons of particle pollution globally each year.

Ship pollutants affect both global climate and the health of people living along coastlines, according to the study authors. The findings appear online the week of Feb. 23 in the Journal of Geophysical Research.

"Since more than 70 percent of shipping traffic takes place within 250 miles of the coastline, this is a significant health concern for coastal communities," said lead study author Daniel Lack, a researcher with the NOAA-supported CU Cooperative Institute for Research in Environmental Sciences based at NOAA's Earth System Research Laboratory in Boulder.

Earlier research by one of the study's co-authors, James Corbett of the University of Delaware, linked particle pollution to premature deaths among coastal populations.

Commercial ships emit both particle pollution and carbon dioxide, but they have opposite effects on the climate, said the researchers. The particles have a global cooling effect that is at least five times greater than the global warming effect from the ships' CO2 emissions.

The particles affect both climate and health, said the researchers. CO2 from ships makes up roughly 3 percent of all human-emitted CO2 and almost 30 percent of smog-forming nitrogen oxide gases.

During summer 2006, Lack and colleagues aboard the NOAA ship Ronald H. Brown analyzed the exhaust from over 200 commercial vessels, including cargo ships, tankers and cruise ships in the Gulf of Mexico, Galveston Bay and the Houston Ship Channel. The researchers also examined the chemistry of particles in ship exhaust to understand what makes ships such hefty polluters.

Ships emit sulfates, the same particles associated with diesel-engine cars and trucks and which have resulted in tighter regulations regarding on-road vehicle fuel standards, according to the research team. Sulfate emissions from ships vary with the concentration of sulfur in ship fuel, the authors found.

Globally, fuel sulfur content is capped under the International Convention for the Prevention of Pollution from Ships. As a result of the cap, some ships use "cleaner," low-sulfur fuels, while others continue to use the high-sulfur counterparts.

But sulfates make up just under half of shipping's total particle emissions, according to the NOAA-CU study. Organic pollutants and sooty, black carbon -- which make up the other half of emissions -- are not directly targeted by today's regulations. A 2008 study by Lack's team focused exclusively on soot.

Emissions of non-sulfate particles depend on the operating speed of the engine and the amount of lubricating oil needed to deal with wear and tear from burning less-refined fuels, according to the researchers. "Fortunately, engines burning 'cleaner,' low-sulfur fuels tend to require less complex lubricants," said Corbett. "So the sulfur fuel regulations have the indirect effect of reducing the organic particles emitted."

One surprising result of burning low-sulfur fuels was that while total particle emissions diminish, the time the remaining particles spend in the air appears to increase. It's while they're airborne that particles pose a risk to human health and affect climate, according to the study.

Lack and colleagues found that the organic and black carbon portion of ship exhaust is less likely to form cloud droplets. As a result, the particles remain suspended for longer periods of time before being washed to the ground through precipitation.

Daniel Lack | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>