Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds stream temperatures don't parallel warming climate trend

Despite a general increase in air temperatures over the past several decades, streams are not necessarily warming at the same rate, according to a new analysis of streams in the western United States using long-term monitoring programs.

Several factors may influence the discrepancy, researchers say, including snowmelt, interaction with groundwater, flow and discharge rates, solar radiation, wind and humidity. But even after factoring out those elements, the scientists were surprised by the cooler-than-expected maximum, mean and minimum temperatures of the streams.

Results of the research, which was supported by the U.S. Geological Survey, the U.S. Forest Service and Oregon State University in Corvallis, will be published May 16 in Geophysical Research Letters, a journal of the American Geophysical Union.

"Individually, you can find streams that seem to be getting warmer and others that are getting cooler," said Ivan Arismendi, a post-doctoral researcher at Oregon State University and lead author on the study. "Some streams show little effect at all. But the bottom line is that recent trends in overall stream temperature do not parallel climate-related trends."

The researchers caution that the findings do not mean that climate change will not have an impact on stream temperature, which is a fundamental driver of ecosystem processes in streams. However, the relationship between air temperatures and stream temperatures may be more complex than previously realized and require additional monitoring.

Alternatively, there may be a time lag between air temperature and stream temperature, the researchers said.

"One surprise was how few stream gauging stations have the necessary long-term records for evaluating climate-related trends in water temperatures," said coauthor Jason Dunham, an aquatic ecologist with the U.S. Geological Survey in Corvallis, Ore. "Most of them are located in streams with high human influence, which makes it difficult to separate climate effects from local human impacts."

"In those areas where human impact was minimal, the variability in trends was impressive," added Dunham. "It suggests to us that a variety of local influences may strongly affect how stream temperatures respond to climate."

Arismendi and his colleagues considered more than 600 gauging stations for the study but only 20 of the stations had a sufficiently lengthy period of monitoring - and lacked human influence. These long-term monitoring sites are operated primarily by the U.S. Geological Survey and U.S. Forest Service, and were located in Oregon, Washington, Idaho, California, Nevada and Alaska.

Warming temperatures can create more rapid or earlier snowmelt and affect stream temperatures in some locations, said coauthor Roy Haggerty, a professor in OSU's College of Earth, Ocean, and Atmospheric Sciences. Another explanation for the lack of warming in many streams could be a time lag that can occur between precipitation entering underground aquifers and entering the stream.

"Groundwater can influence stream temperatures as well as stream flow and in some cases, it can take many years for that groundwater to make it to the stream," noted Haggerty. "This and the other physics processes of a stream need to be considered when analyzing its heat budget - from the geology and stream bed, to the amount of shading in the riparian zone."

Sherri Johnson, a research ecologist with the U.S. Forest Service, also in Corvallis, and coauthor on the study, said stream temperatures can be important for a variety of reasons.

"Temperature is a key indicator of water quality and many streams throughout the Northwest have increased stream temperatures associated with human activity," Johnson said. "Generally speaking, cooler stream temperatures are beneficial, and are a crucial factor in maintaining healthy ecosystems and populations of salmon, steelhead, trout and other cold-water species."

Arismendi said the study points out the value of long-term data from streams that have had minimal human impacts.

"The fact that stream temperatures don't correlate to climate trends in a predicable way indicates we need to study the relationship further to better appreciate the complexity," Arismendi said. "Our knowledge of what influences stream temperatures is limited by the lack of long-term monitoring sites, and previous lumping of results among streams with relatively low and high levels of human impacts.

"Local variability is really important in driving climate sensitivity of streams," he added.

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at Please provide your name, the name of your publication, and your phone number.


"The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States"


Ivan Arismendi: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;

Sherri Johnson: US Forest Service Pacific Northwest Research Station, Corvallis, Oregon, USA;

Jason Dunham: US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA;

Roy Haggerty: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;

David Hockman-Wert: US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA.

Contact information for the authors:

Ivan Arismendi, email:, telephone: 541-750-7443; Sherri Johnson, email:, telephone: 541-758-7771; Jason Dunham, email:, telephone: 541-750-0990; Roy Haggerty, email:, telephone: 541-737-1210.

Kate Ramsayer | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>